Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-08T13:17:37.885Z Has data issue: false hasContentIssue false

Generation of terahertz radiation in collisional plasma by beating of two dark hollow laser beams

Published online by Cambridge University Press:  10 June 2015

Farhad Bakhtiari*
Affiliation:
Photonics Lab, Physics Department, Iran University of Science & Technology, Heydarkhani, Tehran, Iran
Shole Golmohammady
Affiliation:
Photonics Lab, Physics Department, Iran University of Science & Technology, Heydarkhani, Tehran, Iran
Masoud Yousefi
Affiliation:
Photonics Lab, Physics Department, Iran University of Science & Technology, Heydarkhani, Tehran, Iran
Fatemeh D. Kashani
Affiliation:
Photonics Lab, Physics Department, Iran University of Science & Technology, Heydarkhani, Tehran, Iran
Bijan Ghafary
Affiliation:
Photonics Lab, Physics Department, Iran University of Science & Technology, Heydarkhani, Tehran, Iran
*
Address correspondence and reprint requests to: Farhad Bakhtiari, Photonics Lab, Physics Department, Iran University of Science & Technology, Heydarkhani, Tehran, Iran. E-mail: fbakhtiari@physics.iust.ac.ir

Abstract

This paper presents a scheme of terahertz radiation generation based on beating of two dark hollow laser beams with different frequencies, the same electric field amplitudes, in actual plasma with spatially periodic density that electron–neutral collisions have taken into account. The main feature of considered hollow laser beams is, having the same power at different beam orders. Because of special distribution in beam intensity gradient in dark hollow laser beam, the produced terahertz radiation has special field profile. The effects of laser and plasma parameters on terahertz radiation generation are investigated analytically. It can be deduced that by increasing beating frequency, efficiency of terahertz generation decreases which can be compensated by manipulating density ripple magnitudes and dark-size adjusting parameter. The intensity of the emitted radiations is found to be highly sensitive to the beam order. Based on the results of this paper, optimization of laser and plasma parameters can increase the efficiency of terahertz radiation generation strongly.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Al-Naib, I., Sharma, G., Dignam, M., Hafez, H., Ibrahim, A., Cooke, D.G., Ozaki, T. & Morandotti, R. (2013). Effect of local field enhancement on the nonlinear terahertz response of a silicon-based metamaterial. Phys. Rev. B. 88, 195203-1195203-8.CrossRefGoogle Scholar
Beard, M.C., Turner, G.M., & Schmuttenmar, C.A. (2002). Measuring intra-molecular charge transfer via coherent generation of THz radiation. J. Phys. Chem. B. 106, 71467159.CrossRefGoogle Scholar
Bhasin, L. & Tripathi, V.K. (2009). Terahertz generation via optical rectification of x-mode laser in a rippled density magnetized plasma. Phys. Plasma 16, 103105.CrossRefGoogle Scholar
Boyd, T.J.M. & Sanderon, J.J. (2003). The Physics of Plasmas. New York: Cambridge University Press.CrossRefGoogle Scholar
Brodin, G. & Lundberg, J. (1998). Excitation of electromagnetic wake fields in a magnetized plasma. Phys. Rev. E. 57, 70417047.CrossRefGoogle Scholar
Budiarto, E., Margolies, J., Jeong, S., Son, J. & Bokor, J. (1996). High-intensity terahertz pulses at 1-kHz repetition rate. IEEE J. Quantum Elec. 32, 18391846.CrossRefGoogle Scholar
Cai, Y. & He, S. (2006). Propagation of various dark hollow beams in a turbulent atmosphere. Opt. Express 14, 13531367.CrossRefGoogle Scholar
Cai, Y. & Lin, Q. (2004). Hollow elliptical Gaussian beam and its propagation through aligned and misaligned paraxial optical systems. J. Opt. Soc. Am. A. 21, 10581065.CrossRefGoogle ScholarPubMed
Cai, Y., Lu, X. & Lin, Q. (2003). Hollow Gaussian beams and their propagation properties. Opt. Lett. 280, 10841086.CrossRefGoogle Scholar
Chen, F.F. (1983). Introduction to Plasma Physics and Controlled Fusion. New York: Plenum Press.Google Scholar
Ferguson, B. & Zhang, X.C. (2002). Materials for terahertz science and technology. Nat. Mater. 1, 2633.CrossRefGoogle ScholarPubMed
Gildenburg, V.B. & Vvedenskii, N.V. (2007). Optical-to-THz wave conversion via excitation of plasma oscillations in the tunneling-ionization process. Phys. Rev. Lett. 98, 245002-1245002-4.CrossRefGoogle ScholarPubMed
Gupta, D.N. & Sharma, A.K. (2002). Transient self-focusing of an intense short pulse laser in magnetized plasma. Phys. Scr. 66, 262264.CrossRefGoogle Scholar
Hamster, H., Sullivan, A., Gordon, S., White, W. & Falcone, R.W. (1993). Subpicosecond, electromagnetic pulses from intense laser-plasma interaction. Phys. Rev. Lett. 71, 27252728.CrossRefGoogle ScholarPubMed
Hashimshony, D., Zigler, A. & Papadopoulos, K. (2001). Conversion of electrostatic to electromagnetic waves by superluminous ionization fronts. Phys. Rev. Lett. 86, 28062809.CrossRefGoogle ScholarPubMed
Hazra, S., Chini, T.K., Sanyal, M.K. & Grenzer, J. (2004). Ripple structure of crystalline layers in ion-beam-induced Si wafers. Phys. Rev. B. 70, 121307(R).CrossRefGoogle Scholar
Herman, R.M. & Wiggins, T.A. (1991). Production and uses of diffractionless beams. J. Opt. Soc. Am. A. 8, 932942.CrossRefGoogle Scholar
Holzman, J.F. & Elezzabi, A.Y. (2003). Two-photon photoconductive terahertz generation in ZnSe. Appl. Phys. Lett. 83, 29672969.CrossRefGoogle Scholar
Hur, M.S., Gupta, D.N. & Suk, H. (2008). Enhanced electron trapping by a static longitudinal magnetic field in laser wakefield acceleration. Phys. Lett. A. 372, 26842687.CrossRefGoogle Scholar
Hussain, S., Singh, M., Singh, R.K. & Sharma, R.P. (2014). THz generation by self-focusing of hollow Gaussian laser beam in magnetised plasma. Europhys. Lett. 107, 65002-p165002-p6.CrossRefGoogle Scholar
Jha, P., Mishra, R.K., Raj, G. & Upadhyaya, A.K. (2007). Second harmonic generation in laser magnetized–plasma interaction, Phys. Plasmas 14, 053107-1053107-4.CrossRefGoogle Scholar
Jiang, Y., Li, D., Ding, Y.J. & Zotova, I.B. (2011). Terahertz generation based on parametric conversion: From saturation of conversion efficiency to back conversion. Opt. Lett. 36, 16081610.CrossRefGoogle ScholarPubMed
Kim, K.Y., Taylor, A.J., Glownia, J.H. & Rodriguez, G. (2008). Coherent control of terahertz supercontinuum generation in ultrafast laser-gas interactions. Nat. Photonics 2, 605.CrossRefGoogle Scholar
Kostin, V.A. & Vvedenskii, N.V. (2010). Ionization-induced conversion of ultrashort Bessel beam to terahertz pulse. Opt. Lett. 35, 247249.CrossRefGoogle ScholarPubMed
Kuga, T., Torii, Y., Shiokawa, N., Hirano, T., Shimizu, Y. & Sasada, H. (1997). Novel optical trap of atoms with a doughnut beam. Phys. Rev. Lett. 78, 47134716.CrossRefGoogle Scholar
Kuo, C.C., Pai, C.H., Lin, M.W., Lee, K.H., Lin, J.Y., Wang, J. & Chen, S.Y. (2007). Enhancement of relativistic harmonic generation by an optically preformed periodic plasma waveguide. Phys. Rev. Lett. 98, 033901.CrossRefGoogle ScholarPubMed
Layer, B.D., York, A., Antonson, T.M., Varma, S., Chen, Y.H., Leng, Y. & Milchberg, H.M. (2007). Ultrahigh-intensity optical slow-wave structure. Phys. Rev. Lett. 99, 035001-1035001-4.CrossRefGoogle ScholarPubMed
Lu, X., Chen, H. & Zhao, C. (2008). Generation of a dark hollow beam inside a resonator. IEEE Xplore. IPGC, 14.Google Scholar
Malik, A.K., Malik, H.K. & Nishida, Y. (2011 a). Tunable terahertz radiation from a tunnel ionized magnetized plasma cylinder. Phys. Letts. A. 375, 1191.CrossRefGoogle Scholar
Malik, A.K., Malik, H.K. & Stroth, U. (2011 b). Strong terahertz radiation by beating of spatial-triangular lasers in a plasma. Appl.Phys. Letts. 99, 071107.CrossRefGoogle Scholar
Malik, A.K., Malik, H.K. & Stroth, U. (2012). Terahertz radiation generation by beating of two spatial-Gaussian lasers in the presence of a static magnetic field. Phys. Rev. E. 85, 016401-1016401-9.CrossRefGoogle ScholarPubMed
Manouchehrizadeh, M. & Dorranian, D. (2013). Effect of obliqueness of external magnetic field on the characteristics of magnetized plasma wake field. J. Theor. Appl. Phys. 7, 4348.CrossRefGoogle Scholar
Mei, Z. & Zhao, D. (2005). Controllable dark-hollow beams and their propagation Characteristics. J. Opt. Soc. Am. A. 22, 18981902.CrossRefGoogle ScholarPubMed
Paterson, C. & Smith, R. (1996). Higher-order Bessel waves produced by axicon-type computer-generated holograms. Opt. Commun. 124, 121130.CrossRefGoogle Scholar
Pickwell, E. & Wallace, V.P. (2006). Biomedical applications of terahertz technology. J. Phys. D: Appl. Phys. 39, R301R310.CrossRefGoogle Scholar
Ren, C. & Mori, W.B. (2004). Nonlinear and three-dimensional theory for cross-magnetic field propagation of short-pulse lasers in underdense plasmas. Phys. Plasmas 11, 19781986.CrossRefGoogle Scholar
Rothwell, E.J. & Cloud, M.J. (2009). Electromagnetic. Boca Raton: CRC Press, Taylor and Francis Group.Google Scholar
Savage, R.L., Joshi, C. & Mori, W.B. (1992). Frequency up conversion of electromagnetic radiation upon transmission into an ionization front. Phys. Rev. Lett. 68, 946949.CrossRefGoogle Scholar
Sharma, R.P. & Singh, R.K. (2014). Terahertz generation by two cross focused laser beams in collisional plasmas. Phys. Plasma 21, 073101-1073101-6.CrossRefGoogle Scholar
Shen, Y.C., Lo, T., Taday, P.F., Cole, B.E., Tribe, W.R. & Kemp, M.C. (2005). Detection and identification of explosives using terahertz pulsed spectroscopic imaging. Appl. Phys. Lett. 86, 241116-1241116-3.CrossRefGoogle Scholar
Shi, W., Ding, Y.J., Fernelius, N. & Vodopyanov, K. (2002). Efficient, tunable, and coherent 0.18–5.27-THz source based on GaSe crystal. Opt. Lett. 27, 14541456.CrossRefGoogle ScholarPubMed
Singh, D. & Malik, H.K. (2014). Terahertz generation by mixing of two super-Gaussian laser beams in collisional Plasma. Phys. Plasmas 21, 083105-1083105-5.Google Scholar
Singh, M. & Sharma, R.P. (2013). Generation of THz radiation by laser plasma interaction. Contrib. Plasma Phys. 53, 540548.CrossRefGoogle Scholar
Singh, R.K. & Sharma, R.P. (2014). Terahertz generation by two cross focused Gaussian laser beams in magnetized plasma. Phys. Plasma 21, 113109-1113109-6.Google Scholar
Taherabadi, G., Alavynejad, M., Kashani, F.D., Ghafary, B. & Yousefi, M. (2012). Changes in the spectral degree of polarization of a partially coherent dark hollow beam in the turbulent atmosphere for on axis and off-axis propagation point. Opt. Commun. 285, 20172021.CrossRefGoogle Scholar
Varshney, P., Sajal, V., Baliyan, S., Sharma, N.K., Chauhan, P., Kumar, R. (2014 a). Strong terahertz radiation generation by beating of two x-mode spatial triangular lasers in magnetized plasma. Laser Part. Beams 33, 5158.CrossRefGoogle Scholar
Varshney, P., Sajal, V., Chauhan, P., Kumar, R. & Sharma, N.K. (2014 b). Effects of transverse static electric field on terahertz radiation generation by beating of two transversely modulated Gaussian laser beams in a plasma. Laser Part. Beams 32, 375381.CrossRefGoogle Scholar
Varshney, P., Sajal, V., Singh, K.P., Kumar, R. & Sharma, N.K. (2013). Strong terahertz radiation generation by beating of extra-ordinary mode lasers in a rippled density magnetized plasma. Laser Part. Beams 31, 337344.CrossRefGoogle Scholar
Wang, H. & Li, X. (2010). Propagation of partially coherent controllable dark hollow beams with various symmetries in turbulent atmosphere. Opt. Lasers. Eng. 48, 4857.CrossRefGoogle Scholar
Wang, W.M., Kawata, S., Sheng, Z.M., Li, T.Y. & Zhang, J. (2011). Towards gigawatt terahertz emission by few-cycle laser pulses. Phys. Plasmas 18, 073108-1073108-6.CrossRefGoogle Scholar
Wang, X. & Littman, M.G. (1993). Laser cavity for generation of variable-radius rings of light. Opt. Lett. 18, 767768.CrossRefGoogle ScholarPubMed
Wu, Y.K., Li, J. & Wu, J. (2005). Anomalous hollow electron beams in a storage ring. Phys. Rev. Lett. 94, 134802-1134802-4.CrossRefGoogle Scholar
Yin, J., Gao, W. & Zhu, Y. (2003). Generation of dark hollow beams and their applications. In Progress in Optics, (Wolf, E., ed.), vol. 44, pp. 119204. North-Holland, Amsterdam: Elsevier.Google Scholar
Yoshii, J., Lai, C.H., Katsouleas, T., Joshi, C. & Mori, W.B. (1997). Radiation from Cerenkov wakes in a magnetized plasma. Phys. Rev. Lett. 79, 41944197.CrossRefGoogle Scholar
Yuan, Y., Cai, Y., Qu, J., Eyyuboglu, H.T., Baykal, Y., & Korotkova, O. (2009). M2-factor of coherent and partially coherent dark hollow beams propagating in turbulent atmosphere. Opt. Express 17, 1734417356.CrossRefGoogle ScholarPubMed
Yugami, N., Higashiguchi, T., Gao, H., Sakai, S., Takahashi, K., Ito, H., Nishida, Y. & Katsouleas, T. (2002). Experimental observation of radiation from Cherenkov wakes in a magnetized plasma. Phys. Rev. Lett. 89, 065003-1065003-4.CrossRefGoogle Scholar
Zhao, C., Cai, Y., Wang, F., Lu, X. & Wang, Y. (2008). Generation of a high-quality partially coherent dark hollow beam with a multimode fiber. Opt. Lett. 33, 13891391.CrossRefGoogle ScholarPubMed
Zheng, H., Redo-Sanchez, A. & Zhang, X.C. (2006). Identification and classification of chemicals using terahertz reflective spectroscopic focal-plane imaging system. Opt. Express 14, 91309141.CrossRefGoogle Scholar