Hostname: page-component-77c89778f8-swr86 Total loading time: 0 Render date: 2024-07-16T09:47:49.516Z Has data issue: false hasContentIssue false

Estrategias humanas y paleoclima en los Andes (34°S): Variaciones en la intensidad de ocupación de Laguna del Diamante (ca. 2000-500 años aP)

Published online by Cambridge University Press:  18 August 2023

Lucía Yebra*
Affiliation:
Laboratorio de Paleoecología Humana, Instituto de Ciencias Básicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Mendoza, Argentina
Valeria Cortegoso
Affiliation:
Laboratorio de Paleoecología Humana, Instituto de Ciencias Básicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Mendoza, Argentina
Erik Marsh
Affiliation:
Laboratorio de Paleoecología Humana, Instituto de Ciencias Básicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Mendoza, Argentina
María Eugenia de Porras
Affiliation:
Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales, Instituto de Ciencias Básicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Mendoza, Argentina
Antonio Maldonado
Affiliation:
Centro de Estudios Avanzados en Zonas Áridas, Instituto de Investigación Multidisciplinario en Ciencia y Tecnología, Universidad de La Serena, La Serena, Chile
Silvina Castro
Affiliation:
Laboratorio de Paleoecología Humana, Instituto de Ciencias Básicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Mendoza, Argentina
Ramiro Barberena
Affiliation:
Laboratorio de Paleoecología Humana, Instituto de Ciencias Básicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Mendoza, Argentina
Diego Winocur
Affiliation:
Instituto de Estudios Andinos, Universidad de Buenos Aires, Buenos Aires, Argentina
Víctor Durán
Affiliation:
Laboratorio de Paleoecología Humana, Instituto de Ciencias Básicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Mendoza, Argentina
*
Autora de contacto: Lucía Yebra; Email: lyebra@mendoza-conicet.gob.ar

Resumen

El área de Laguna del Diamante (3.000 m snm) tiene una oferta de recursos atractiva para las sociedades humanas durante los últimos 2.000 años. Este trabajo evalúa la variable intensidad en la ocupación humana en Laguna del Diamante en cinco segmentos temporales entre 2030 y 440 años cal aP. Estos segmentos se modelaron a partir de 14 fechados radiocarbónicos procedentes de tres sitios; la densidad de lascas proximales se evalúa como proxy de intensidad de ocupación. Se comparan los pulsos registrados arqueológicamente con la variabilidad ambiental vinculada a aumento/disminución de temperatura y humedad, de los últimos milenios en tres lagunas: Aculeo, Chepical y del Maule (33°-35°S). A partir de diversos indicadores —cobertura vegetal, extensión/disminución de la cubierta de hielo, cambios de la precipitación relacionados al sistema de vientos del oeste y su variabilidad debido a El Niño Oscilación del Sur— se observó en casi toda la secuencia una asociación positiva entre condiciones favorables y ocupaciones intensas. Se discute el registro de dos pulsos de mayor intensidad: entre 1200 y 1280 años cal aP, asociado con aumento de temperatura de verano e intensificación de precipitaciones; y entre 450 y 500 años cal aP, vinculado con condiciones frías y coincidente con la presencia incaica en el área.

Abstract

Abstract

Laguna del Diamante (34°S) is a high-altitude wetland (3,000 m asl) with resources that have been attractive to human societies for the last 2,000 years. This article evaluates the variable intensity of its occupation in five temporal segments between 2030 and 440 cal BP, according to a chronology modeled from 14 radiocarbon dates excavated in stone enclosures at three sites. The variation in the density of proximal flakes is used as a proxy of human occupation intensity. We assess the correlation of more intense human occupation and environmental changes in temperature and humidity, as recorded at three high-altitude lakes: Aculeo, Chepical, and Maule (33°–35°S). These archives include proxies for vegetation cover, ice cover extent, and changes in precipitation derived from the Westerlies and the El Niño Southern Oscillation. There is a correlation between favorable conditions and more intense occupations at multiple times in the sequence. We discuss two periods of greater intensity: 1200–1280 cal BP (calibrated medians), when summer temperature and precipitation was higher, and 450–500 cal BP, when temperatures were lower and the Inca were in the area.

Type
Article
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press on behalf of the Society for American Archaeology

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Referencias citadas

Albiol, Claudia I. 2018. Aplicación de criterios para la identificación de precipitaciones extremas en los oasis mendocinos, 1970-2010. Vientos del Norte 2:1035.Google Scholar
Andrefsky, William. 1998. Lithics: Macroscopic Approaches to Analysis. Cambridge University Press, Cambridge.Google Scholar
Barberena, Ramiro, Tessone, Augusto, Cagnoni, Mariana, Gasco, Alejandra, Durán, Víctor, Winocur, Diego, Benítez, Anaí et al. 2021. Bioavailable Strontium in the Southern Andes (Argentina and Chile): A Tool for Tracking Human and Animal Movement. Environmental Archaeology 26:323335.CrossRefGoogle Scholar
Bárcena, J. Roberto. 1979. Informe sobre recientes investigaciones arqueológicas en el N.O. de la provincia de Mendoza, Argentina (Valle de Uspallata y zonas vecinas) (con especial referencia al período incaico). Actas del VII Congreso de Arqueología de Chile, Vol. 2, pp. 661692. Ediciones Kultrún, Altos de Vilches, Chile.Google Scholar
Beck, Hylke E., Zimmermann, Niklaus E., MacVicar, Tim R., Vergopolan, Noemi, Berg, Alexis y Wood, Eric F.. 2018. Present and Future Köppen-Geiger Climate Classification Maps at 1 km Resolution. Scientific Data 5:112.CrossRefGoogle ScholarPubMed
Bettinger, Robert L. 2013. Effects of the Bow on Social Organization in Western North America. Evolutionary Anthropology: Issues, News, and Reviews 22:118123.CrossRefGoogle ScholarPubMed
Borrazzo, Karen. 2020. Expanding the Scope of Actualistic Taphonomy in Archaeological Research. En Actualistic Taphonomy in South America, editado por Martínez, Sergio, Rojas, Alejandra y Cabrera, Fernanda, pp. 221242. Springer, Cham, Suiza.CrossRefGoogle Scholar
Bronk Ramsey, Christopher. 2009. Bayesian Analysis of Radiocarbon Dates. Radiocarbon 51:337360.CrossRefGoogle Scholar
Cahiza, Pablo y Ots, María José. 2005. La presencia Inka en el extremo sur oriental del Kollasuyo: Investigaciones en las tierras bajas de San Juan y Mendoza, y el Valle de Uco-RCA, Argentina. Xama 15–18:217228.Google Scholar
Capitanelli, Ricardo. 1972. Geomorfología y clima de la provincia de Mendoza. Boletín de la Sociedad Argentina de Botánica 13 (suplementario):1548.Google Scholar
Carrevedo, María L., Frugone, Matías, Latorre, Claudio, Maldonado, Antonio, Bernárdez, Patricia, Prego, Ricardo, Cárdenas, Daniela y Valero-Garcés, Blas. 2015. A 700-Year Record of Climate and Environmental Change from a High Andean Lake: Laguna del Maule, Central Chile (36°S). Holocene 25:956972.CrossRefGoogle Scholar
Castro, Silvina C. 2018. Cazadores-recolectores y pastores en los Andes (San Juan, Argentina): Cambios en la organización tecnológica durante el Holoceno. Arqueología 24:103125.CrossRefGoogle Scholar
Castro, Silvina, Yebra, Lucía, Cortegoso, Valeria, Marsh, Erik, Castillo, Agustín, Rughini, Agustina, Fernández, María V. y Garvey, Raven. 2021. The Introduction of the Bow and Arrow Across South America's Southern Threshold Between Food-Producing Societies and Hunter-Gatherers. En Ancient Hunting Strategies in Southern South America, editado por Belardi, Juan B., Bozzuto, Damián L., Fernández, Pablo M., Moreno, Enrique A. y Neme, Gustavo A., pp. 137158. Springer, Cham, Suiza.CrossRefGoogle Scholar
Cornejo, Luis. 2014. Sobre la cronología del inicio de la imposición cuzqueña en Chile. Estudios Atacameños 47:101116.CrossRefGoogle Scholar
Cornejo, Luis y Sanhueza, Lorena. 2003. Coexistencia de cazadores recolectores y horticultores tempranos en la cordillera andina de Chile Central. Latin American Antiquity 14:389407.CrossRefGoogle Scholar
Cornejo, Luis y Sanhueza, Lorena. 2011. Caminos que cruzan la cordillera: El rol del paso del Maipo en la ocupación de la cordillera en Chile Central. Revista Chilena de Antropología 23:101122.Google Scholar
Cortegoso, Valeria, Barberena, Ramiro, Durán, Víctor y Lucero, Gustavo. 2016. Geographic Vectors of Human Mobility in the Andes (34-36°S): Comparative Analysis of “Minor” Obsidiana Source. Quaternary International 422:8192.CrossRefGoogle Scholar
Cortegoso, Valeria, Yebra, Lucía, Durán, Víctor, Barberena, Ramiro, Lucero, Gustavo, Cornejo, Luis, Giesso, Martín, MacDonald, Brandi L. y Glascock, Michael. 2020. Obsidian Sources from the Southern Andean Highlands (Laguna del Diamante, Argentina and Chile): Geochemical Insights on Geological Complexity and Human Biogeography. Archaeological and Anthropological Sciences 12:Article 29.CrossRefGoogle Scholar
De Francesco, Anna M., Durán, Víctor, Bloise, Andrea y Neme, Gustavo. 2006. Caracterización y procedencia de obsidianas de sitios arqueológicos del área natural protegida Laguna del Diamante (Mendoza, Argentina) con metodología no destructiva por fluorescencia de rayos (XRF). Anales de Arqueología y Etnología 61 (vol. especial):5367.Google Scholar
de Jong, Rixt, von Gunten, Lucien, Maldonado, Antonio y Grosjean, Martín. 2013. Late Holocene Summer Temperatures in the Central Andes Reconstructed from the Sediments of High-Elevation Laguna Chepical, Chile (32°S). Climate of the Past 9:19211932.CrossRefGoogle Scholar
de Porras, M. Eugenia y Maldonado, Antonio. 2018. Metodologías y avances de la palinología del Cuaternario tardío a lo largo de la Diagonal Árida Sudamericana. Publicación Electrónica de la Asociación Paleontológica Argentina 18(2):1838.Google Scholar
Durán, Víctor, Cortegoso, Valeria, Barberena, Ramiro, Frigolé, Cecilia, Novellino, Paula, Lucero, Gustavo, Yebra, Lucía, et al. 2018. “To and Fro” the Southern Andean Highlands (Argentina and Chile): Archaeometric Insights on Geographic Vectors of Mobility. Journal of Archaeological Science: Reports 18:668678.Google Scholar
Durán, Víctor, Neme, Gustavo, Cortegoso, Valeria y Gil, Adolfo. 2006. Arqueología del área natural protegida Laguna del Diamante (Mendoza, Argentina). Anales de Arqueología y Etnología 61 (vol. especial):81134.Google Scholar
Durán, Víctor, Sol Zárate Bernardi, M., Yebra, Lucía, Frigolé, Cecilia, Lucero, Gustavo, Andreoni, Diego, Winocur, Diego, et al. 2021. Apropiación y control estatal de ambientes de altura en el extremo meridional del Tawantinsuyu. Estudios Atacameños 67:235.CrossRefGoogle Scholar
Espizua, Lydia E. 2005. Holocene Glacier Chronology of Valenzuela Valley, Mendoza Andes, Argentina. Holocene 15:10791085.CrossRefGoogle Scholar
Falabella, Fernanda, Pavlovic, Daniel, Planella, María T. y Sanhueza, Lorena. 2017. Diversidad y heterogeneidad cultural y social en Chile central durante los períodos Alfarero temprano e intermedio tardío (300 años aC a 1450 años dC). En Prehistoria en Chile: Desde sus primeros habitantes hasta los incas, editado por Falabella, Fernanda, Uribe, Mauricio, Sanhueza, Lorena, Aldunate, Carlos y Hidalgo, Jorge, pp. 365399. Editorial Universitaria, Santiago.Google Scholar
Foley, Robert A. y Lahr, Marta M.. 2015. Lithic Landscapes: Early Human Impact from Stone Tool Production on the Central Saharan Environment. PLoS ONE 10(3):e0116482.CrossRefGoogle ScholarPubMed
Frigolé, Cecilia, Sanhueza, Lorena, Soto, Camila Riera, Falabella, Fernanda, Menzies, Andrew y Barraza, Monserrat. 2018. Análisis de tecnología de pastas cerámicas provenientes de las vertientes oriental y occidental de la cordillera de los Andes (200-1000 dC). En Libro de Resúmenes: XXI Congreso Nacional de Arqueología Chilena, pp. 3132. Universidad Alberto Hurtado, Santiago.Google Scholar
Frugone-Álvarez, Matías, Latorre, Claudio, Barreiro-Lostres, Fernando, Giralt, Santiago, Moreno, Ana, Polanco-Martínez, Josué, Maldonado, Antonio, et al. 2020. Volcanism and Climate Change as Drivers in Holocene Depositional Dynamic of Laguna del Maule (Andes of Central Chile – 36°S). Climate of the Past 16:10971125.CrossRefGoogle Scholar
García, Alejandro. 2009. El dominio incaico en la periferia meridional del Tawantinsuyu: Revisión de las investigaciones arqueológicas en la región de Cuyo, Argentina. Sociedades de Paisajes Áridos y Semiáridos 1:4773.Google Scholar
Garreaud, René D. 2009. The Andes Climate and Weather. Advances in Geosciences 22:311.CrossRefGoogle Scholar
Garreaud, René D., Vuille, Mathias, Compagnucci, Rosa y Marengo, José. 2008. Present-Day South American Climate. Palaeogeography, Palaeoclimatology, Palaeoecology 281:180195.CrossRefGoogle Scholar
Gasco, Alejandra V. 2018. Cazadores y pastores desde el 2000 aP en el límite sur del área andina: Estado de la cuestión y perspectivas futuras. Cuadernos del Instituto Nacional de Antropología y Pensamiento Latinoamericano 6(2):1538.Google Scholar
Gayo, Eugenia M., MacRostie, Virginia B., Campbell, Roberto, Flores, Carola, Maldonado, Antonio, Uribe-Rodríguez, Mauricio, Moreno, Patricio I., et al. 2019. Geohistorical Records of the Anthropocene in Chile. Elementa, Science of the Anthropocene 7:15.CrossRefGoogle Scholar
Gil, Adolfo, Giardina, Miguel, Neme, Gustavo y Ugan, Andrew. 2014. Demografía humana e incorporación de cultígenos en el centro occidente argentino: Explorando tendencias en las fechas radiocarbónicas. Revista Española de Antropología Americana 44:523553.Google Scholar
Hijmans, Robert, Cameron, Susan E., Parra, Juan L., Jones, Peter y Jarvis, Andy. 2005. Very High-Resolution Interpolated Climate Surfaces for Global Land Areas. International Journal of Climatology 25:19651978.CrossRefGoogle Scholar
Hogg, Alan, Heaton, Timothy J., Hua, Quan, Palmer, Jonathan G., Turney, Chris S. M., Southon, John, Bayliss, Alex, et al. 2020. SHCal2020 Southern Hemisphere Calibration, 0–55,000 Years cal BP. Radiocarbon 62:759778.CrossRefGoogle Scholar
Jenny, Bettina, Valero-Garcés, Blas L., Urrutia, Roberto, Kelts, Kerry, Veit, Heinz, Appleby, Peter G. y Geyh, Mebus. 2002. Moisture Changes and Fluctuations of the Westerlies in Mediterranean Central Chile During the Last 2,000 Years: The Laguna Aculeo Record (33°50'S). Quaternary International 87:318.CrossRefGoogle Scholar
Liu, Cheng, Shimelmitz, Ron, Friesem, David, Yeshurun, Reuven y Nadel, Dani. 2020. Diachronic Trends in Occupation Intensity of the Epipaleolithic Site of Neve David (Mount Carmel, Israel): A Lithic Perspective. Journal of Anthropological Archaeology 60:101223.CrossRefGoogle Scholar
Maldonado, Antonio, Eugenia de Porras, M., Zamora, Andrés, Rivadeneira, Marcelo y Abarzúa, Ana M.. 2017. El escenario geográfico y paleoambiental de Chile. En Prehistoria de Chile: Desde sus primeros habitantes hasta los incas, editado por Falabella, Fernanda, Uribe, Mauricio, Sanhueza, Lorena, Aldunate, Carlos y Hidalgo, Jorge, pp. 2370. Editorial Universitaria, Santiago.Google Scholar
Markgraf, Vera. 1983. Late and Postglacial Vegetational and Paleoclimatic Changes in Subantarctic, Temperate, and Arid Environments in Argentina. Palynology 7(1):4370.CrossRefGoogle Scholar
Marsh, Erik. 2017. La fecha de la cerámica más temprana en los Andes sur: Una perspectiva macrorregional mediante modelos bayesianos. Revista del Museo de Antropología 1:8394.CrossRefGoogle Scholar
Marsh, Erik, Kidd, Ray, Ogburn, Dennis y Durán, Víctor. 2017. Dating the Expansion of the Inca Empire: Bayesian Models from Ecuador and Argentina. Radiocarbon 59:117140.CrossRefGoogle Scholar
Martel-Cea, Alejandra, Maldonado, Antonio, Grosjean, Martín, Alvial Ritx de Jong, Ingrid, Frizt, Shirley y von Gunten, Lucien. 2016. Late Holocene Environmental Changes as Recorded in the Sediments of High Andean Laguna Chepical, Central Chile (32°S; 3050 m asl). Palaeogeography, Palaeoclimatology, Palaeoecology 461:4454.CrossRefGoogle Scholar
Masiokas, Mariano, Villalba, Ricardo, Christie, Duncan, Betman, Ernesto, Luckman, Biran, Le Quesne, Carlos, Prieto, María R. y Mauget, Steven. 2011. Snowpack Variations since AD 1150 in the Andes of Chile and Argentina (30°–37°S) Inferred from Rainfall, Tree-Ring and Documentary Records. Journal of Geophysical Research 117:111.Google Scholar
Matteucci, Silvia. 2012. Ecorregión Altos Andes. En Ecorregiones y complejos ecosistémicos argentinos, editado por Morello, Jorge, Matteucci, Silvia, Rodríguez, Andrea y Silva, Mariana, pp. 186. Orientación Gráfica Editora, Buenos Aires.Google Scholar
Muiño, Walter, Prina, Anibal y Alfonso, Graciela. 2012. Flora altoandina de la Reserva Laguna del Diamante (Mendoza, Argentina). Chloris Chilensis 15(1):189.Google Scholar
Neme, Gustavo y Gil, Adolfo. 2009. Human Occupation and Increasing Mid-Holocene Aridity. Current Anthropology 50:149163.CrossRefGoogle Scholar
Neme, Gustavo, Otaola, Clara, Giardina, Miguel, Gil, Adolfo y Franchetti, Fernando. 2020. Consumo de fauna y funcionalidad de sitios: Testeando hipótesis en los Andes meridionales. Latin American Antiquity 31:163179.CrossRefGoogle Scholar
Peralta, Paulina y Salas, Carolina. 2004. Funcionalidad de asentamientos cordilleranos durante el Arcaico tardío y el Agroalfarero temprano (Chile Central). Chungara 36:923933.Google Scholar
Planella, M. Teresa, Cornejo, Luis y Tagle A., Blanca 2005. Alero Las Morrenas 1: Evidencias de cultígenos entre cazadores recolectores de finales del período Arcaico en Chile Central. Chungara 37:5974.Google Scholar
Planella, M. Teresa, Scherson, Rosa y MacRostie, Virginia. 2011. Sitio El Plomo y nuevos registros de cultígenos iniciales en cazadores del Arcaico IV en alto Maipo, Chile Central. Chungara 43:189202.Google Scholar
Puig, Silvia, Rosi, María I., Videla, Fernando y Mendez, Eduardo. 2011. Summer and Winter Diet of the Guanaco and Food Availability for a High Andean Migratory Population (Mendoza, Argentina). Mammalian Biology 76:727734.CrossRefGoogle Scholar
Rein, Bert, Lückge, Andreas y Sirocko, Frank. 2004. A Major Holocene ENSO Anomaly During the Medieval Period. Geophysical Research Letters 31:L17211.CrossRefGoogle Scholar
Rodríguez, M. Fernanda. 2013. Acerca de la flora de Antofagasta de la Sierra, Catamarca, Argentina: Ambiente y paleoambiente. Darwiniana 1:295323.CrossRefGoogle Scholar
Sanhueza, Lorena, Cornejo, Luis, Durán, Víctor, Cortegoso, Valeria, Yebra, Lucía, Glascock, Michael D., MacDonald, Brandi L. y Giesso, Martín. 2021. Source, Circulation, and Use of Obsidian in Central Chile. Quaternary International 574:1326.CrossRefGoogle Scholar
Sruoga, Patricia, Etcheverría, Mariela, Feineman, Maureen, Rosas, Mario, Bukert, Cosima y Ibañes, Oscar. 2012. Complejo Caldera Diamante-volcán Maipo (34°10'S, 69°50'O): Evolución volcanológica y geoquímica e implicancias en su peligrosidad. Revista Asociación Geológica Argentina 69:508530.Google Scholar
Stern, Charles, Amini, Hassan, Charrier, Reynaldo, Godoy, Estanislao, Hervé, Francisco y Varela, Juan. 1984. Petrochemistry and Age of Rhyolitic Pyroclastic Flows which Occur Along the Drainage Valleys of the Río Maipo and Río Cachapoal (Chile), and the Río Yaucha and Río Papagayos (Argentina). Andean Geology 23:3952.Google Scholar
Timpson, Adrian, Barberena, Ramiro, Thomas, Mark G., Méndez, César y Manning, Katie. 2021. Directly Modelling Population Change in the South American Arid Diagonal Using 14C Dates. Philosophical Transactions of the Royal Society B 376:20190723.CrossRefGoogle Scholar
Veth, Peter. 2005. Cycles of Aridity and Human Mobility: Risk Minimization Among Late Pleistocene Foragers of the Western Desert, Australia. En Desert Peoples: Archaeological Perspectives, editado por Veth, Peter, Smith, Mike y Hiscock, Peter, pp. 100115. Blackwell Publishing, Oxford.CrossRefGoogle Scholar
Viale, Maximiliano, Bianchi, Emilio, Cara, Leandro, Ruiz, Lucas, Villalba, Ricardo, Pitte, Pierre, Masiokas, Mariano, Rivera, Juan y Zalazar, Laura. 2019. Contrasting Climates at Both Sides of the Andes in Argentina and Chile. Frontiers in Environmental Science 7:115.CrossRefGoogle Scholar
von Gunten, Lucien, Grosjean, Martin, Rein, Bert, Urrutia, Roberto y Appleby, Peter. 2009. A Quantitative High-Resolution Summer Temperature Reconstruction Based on Sedimentary Pigments from Laguna Aculeo, Central Chile, back to AD 850. Holocene 19:873881.CrossRefGoogle Scholar
Weitzel, Celeste, Borrazzo, Karen, Ceraso, Antonio y Balirán, Catalina. 2014. Trampling Fragmentation Potential of Lithic Artifacts: An Experimental Approach. Intersecciones en Antropología 15:97110.Google Scholar
Williams, Alan N. 2012. The Use of Summed Radiocarbon Probability Distributions in Archaeology: A Review of Methods. Journal of Archaeological Science 39:578589.CrossRefGoogle Scholar
Supplementary material: File

Yebra et al. supplementary material

Yebra et al. supplementary material

Download Yebra et al. supplementary material(File)
File 40.4 KB