Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-12T23:49:50.408Z Has data issue: false hasContentIssue false

92.80 The edge-choosability of the tetrahedron

Published online by Cambridge University Press:  01 August 2016

David Cariolaro
Affiliation:
Institute of Mathematics, Academia Sinica, Nankang, Taipei 115, Taiwan, e-mails: cariolaro@math.sinica.edu.tw, makwlih@sinica.edu.tw
Ko-Wei Lih
Affiliation:
Institute of Mathematics, Academia Sinica, Nankang, Taipei 115, Taiwan, e-mails: cariolaro@math.sinica.edu.tw, makwlih@sinica.edu.tw

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Notes
Copyright
Copyright © The Mathematical Association 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Vizing, V. G. Colouring the vertices of a graph in prescribed colours (in Russian), Diskret. Analiz. 29 (1976) pp. 310.Google Scholar
2. Galvin, F. The list-chromatic index of a bipartite multigraph, J. Combin. Theory Ser. B 63 (1995) pp. 153158.Google Scholar
3. Häggkvist, R. and Janssen, J. New bounds on the list-chromatic index of the complete graph and other simple graphs, Combin. Probab. Comput. 6 (1997) pp. 295313.Google Scholar
4. Fiorini, S. and Wilson, R. J. Edge-colourings of graphs, Research Notes in Mathematics, (Pitman) 1977.Google Scholar