Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-06-08T22:31:15.693Z Has data issue: false hasContentIssue false

Controlling Nanoparticles Formation in Molten Metallic Bilayers by Pulsed-Laser Interference Heating

Published online by Cambridge University Press:  09 July 2012

M. Khenner*
Affiliation:
Department of Mathematics, Applied Physics Institute, Western Kentucky University, Bowling Green, KY 42101
S. Yadavali
Affiliation:
Department of Chemical and Biomolecular Engineering, The University of Tennessee, Knoxville, TN 37996
R. Kalyanaraman
Affiliation:
Department of Chemical and Biomolecular Engineering, Department of Materials Science and Engineering, Sustainable Energy Education Research Center, The University of Tennessee, Knoxville, TN 37996
*
Corresponding author. E-mail: mikhail.khenner@wku.edu.
Get access

Abstract

The impacts of the two-beam interference heating on the number of core-shell and embedded nanoparticles and on nanostructure coarsening are studied numerically based on the non-linear dynamical model for dewetting of the pulsed-laser irradiated, thin (< 20 nm) metallic bilayers. The model incorporates thermocapillary forces and disjoining pressures, and assumes dewetting from the optically transparent substrate atop of the reflective support layer, which results in the complicated dependence of light reflectivity and absorption on the thicknesses of the layers. Stabilizing thermocapillary effect is due to the local thickness-dependent, steady-state temperature profile in the liquid, which is derived based on the mean substrate temperature estimated from the elaborate thermal model of transient heating and melting/freezing. Linear stability analysis of the model equations set for Ag/Co bilayer predicts the dewetting length scales in the qualitative agreement with experiment.

Type
Research Article
Copyright
© EDP Sciences, 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Vrij, A., Overbeek, J. Th. G.. Rupture of Thin Liquid Films Due to Spontaneous Fluctuations in Thickness. J. Am. Chem. Soc., 90 (1968), 3074-3078. CrossRefGoogle Scholar
Reiter, G.. Dewetting of thin polymer films. Phys. Rev. Lett., 68 (1992), 75-78. CrossRefGoogle ScholarPubMed
Sharma, A., Khanna, R.. Pattern Formation in Unstable Thin Liquid Films. Phys. Rev. Lett., 81 (1998), 3463-3466. CrossRefGoogle Scholar
Bradley, R.M., Harper, J.M.E.. Theory of ripple topography induced by ion bombardment. J. Vac. Sci. Tech. A, 6 (1988), 2390-2395. CrossRefGoogle Scholar
Chason, E., Mayer, T.M., Kellerman, B.K., Mcllroy, D.T., Howard, A.J.. Roughening instability and evolution of the Ge(001) surface during ion sputtering. Phys. Rev. Lett., 72 (1994), 3040-3043. CrossRefGoogle ScholarPubMed
Bischof, J., Scherer, D., Herminghaus, S., Leiderer, P.. Dewetting Modes of Thin Metallic Films : Nucleation of Holes and Spinodal Dewetting. Phys. Rev. Lett., 77 (1996), 1536-1539. CrossRefGoogle ScholarPubMed
Henley, S.J., Carey, J.D., Silva, S.R.P.. Pulsed-laser-induced nanoscale island formation in thin metal-on-oxide films. Phys. Rev. B, 72 (2005), 195408-18. CrossRefGoogle Scholar
Trice, J., Thomas, D., Favazza, C., Sureshkumar, R. R., Kalyanaraman, R.. Investigation of pulsed laser induced dewetting in nanoscopic metal films. Phys. Rev. B, 75 (2007), 235439-54. CrossRefGoogle Scholar
Zhang, C., Kalyanaraman, R.. In-situ nanostructured film formation during physical vapor deposition. Appl. Phys. Lett., 83 (2003), 4827-4829. CrossRefGoogle Scholar
Favazza, C., Trice, J., Gangopadhyay, A.K., Garcia, H., Sureshkumar, R., Kalyanaraman, R.. Nanoparticle ordering by dewetting of Co on SiO2. J. Electron. Mater., 35 (2006), 1618-1620. CrossRefGoogle Scholar
Favazza, C., Kalyanaraman, R., Sureshkumar, R.. Robust nanopatterning by laser-induced dewetting of metal nanofilms. Nanotechnology, 17 (2006), 4229-4234. CrossRefGoogle ScholarPubMed
Trice, J., Favazza, C., Thomas, D., Garcia, H., Kalyanaraman, R., Sureshkumar, R. R.. Novel self-organization mechanism in ultrathin liquid films : theory and experiment. Phys. Rev. Lett., 101 (2008), 017802-6. CrossRefGoogle ScholarPubMed
Krishna, H., Sachan, R., Strader, J., Favazza, C., Khenner, M., Kalyanaraman, R.. Thickness-dependent spontaneous dewetting morphology of ultrathin Ag films. Nanotechnology, 21 (2010), 155601-8. CrossRefGoogle ScholarPubMed
Longstreth-Spoor, L., Trice, J., Garcia, H., Zhang, C., Kalyanaraman, R.. Nanostructure and microstructure of laser-interference-induced dynamic patterning of Co on Si. J. Phys. D : Appl. Phys., 39 (2006), 5149-5159. CrossRefGoogle Scholar
Favazza, C., Trice, J., Kalyanaraman, R., Sureshkumar, R.. Self-organized metal nanostructures through laser-interference driven thermocapillary convection. Appl. Phys. Lett., 91 (2007), 043105-7. CrossRefGoogle Scholar
Krishna, H., Shirato, N., Yadavali, S., Sachan, R., Strader, J., Kalyanaraman, R.. Self-organization of nanoscale multilayer liquid metal films : Experiment and theory. ACS Nano, 5 (2011), 470-476. CrossRefGoogle ScholarPubMed
Brochard-Wyart, F., Martin, P., Redon, C.. Liquid/liquid dewetting. Langmuir, 9 (1993), 3682-3690. CrossRefGoogle Scholar
Lambooy, P., Phelan, K.C., Haugg, O., Krausch, G.. Dewetting at the Liquid-Liquid Interface. Phys. Rev. Lett., 76 (1996), 1110-1113. CrossRefGoogle ScholarPubMed
Sferrazza, M., Heppenstall-Butler, M., Cubitt, R., Bucknall, D., Webster, J., Jones, R. A. L.. Interfacial Instability Driven by Dispersive Forces : The Early Stages of Spinodal Dewetting of a Thin Polymer Film on a Polymer Substrate. Phys. Rev. Lett., 81 (1998), 5173-5176. CrossRefGoogle Scholar
David, M.O., Reiter, G., Sitthai, T., Schultz, J.. Deformation of a Glassy Polymer Film by Long-Range Intermolecular Forces. Langmuir, 14 (1998), 5667-5672. CrossRefGoogle Scholar
Segalman, R.A., Green, P.F.. Dynamics of Rims and the Onset of Spinodal Dewetting at Liquid/Liquid Interfaces. Macromolecules, 32 (1999), 801-807. CrossRefGoogle Scholar
Wang, C., Krausch, G., Geoghegan, M.. Dewetting at a Polymer-Polymer Interface : Film Thickness Dependence. Langmuir, 17 (2001), 6269-6274. CrossRefGoogle Scholar
de Silva, J.P., Geoghegan, M., Higgins, A.M., Krausch, G., David, M.O., Reiter, G.. Switching Layer Stability in a Polymer Bilayer by Thickness Variation. Phys. Rev. Lett., 98 (2007), 267802-5. CrossRefGoogle Scholar
Xu, L., Shi, T., An, L.. The competition between the liquid-liquid dewetting and the liquid-solid dewetting. J. Chem. Phys., 130 (2009), 184903-10. CrossRefGoogle ScholarPubMed
Pototsky, A., Bestehorn, M., Merkt, D., Thiele, U.. Alternative pathways of dewetting for a thin liquid two-layer film. Phys. Rev. E, 70 (2004), 025201-4. CrossRefGoogle ScholarPubMed
Pototsky, A., Bestehorn, M., Merkt, D.. Morphology changes in the evolution of liquid two-layer films. J. Chem. Phys., 122 (2005), 224711-23. CrossRefGoogle ScholarPubMed
Bandyopadhyay, D., Gulabani, R., Sharma, A.. Instability and dynamics of thin liquid bilayers. Ind. Eng. Chem. Res., 44 (2005), 1259-1272. CrossRefGoogle Scholar
Fisher, L.S., Golovin, A.A.. Nonlinear stability analysis of a two-layer thin liquid film : Dewetting and authophobic behavior. J. Colloid Interface Science, 291 (2005), 515-528. CrossRefGoogle ScholarPubMed
Merkt, D., Pototsky, A., Bestehorn, M., Thiele, U.. Long-wave theory of bounded two-layer films with a free liquid-liquid interface : Short- and long-time evolution. Phys. Fluids, 17 (2005), 064104-23. CrossRefGoogle Scholar
Pototsky, A., Bestehorn, M., Merkt, D., Thiele, U.. Evolution of interface patterns of three-dimensional two-layer liquid films. Europhys. Lett., 74 (2006), 665-671. CrossRefGoogle Scholar
Bandyopadhyay, D., Sharma, A.. Nonlinear instabilities and pathways of rupture in thin liquid bilayers. J. Chem. Phys., 125 (2006), 054711-13. CrossRefGoogle ScholarPubMed
Nepomnyashchy, A.A., Simanovskii, I. B.. Decomposition of a two-layer thin liquid film flowing under the action of Marangoni stresses. Phys. Fluids, 18 (2006), 112101-11. CrossRefGoogle Scholar
Nepomnyashchy, A.A., Simanovskii, I.B.. Marangoni instability in ultrathin two-layer films. Phys. Fluids, 19 (2007), 122103-14. CrossRefGoogle Scholar
Nepomnyashchy, A.A., Simanovskii, I.B.. The Influence of Gravity on the Dynamics of Non-Isothermic Ultra-Thin Two-Layer Films. Microgravity Sci. Technol., 21 (2009), S261-S269. CrossRefGoogle Scholar
Yellen, B.B., Hovorka, O., Friedman, G.. Arranging matter by magnetic nanoparticle assemblers. Proc. Nat. Acad. Sci., 102 (2005), 8860-8864. CrossRefGoogle ScholarPubMed
Gijs, M.A.M.. Magnetic bead handling on-chip : new opportunities for analytical applications. Microfluidics and Nanofluidics, 1 (2004), 22-40. Google Scholar
Hao, Y.M., Chen, M., Hu, Z.B.. Effective removal of Cu(II) ions from aqueous solution by amino-functionalized magnetic nanoparticles. J. Hazard. Mat., 184 (2010), 392-399. CrossRefGoogle ScholarPubMed
Wang, J., Wang, L.Y., Sun, Y., Zhu, X.N., Xu, H.Y., Bi, N., Zhang, H.Q., Cao, Y.B., Wang, X.H., Song, D.Q.. Preparation of core/shell Fe3O4/Au nanocomposite and its application to surface plasmon resonance biosensor. Acta Chimica Sinica, 68 (2010), 263-268. Google Scholar
Sepúlveda, B., Calle, A., Lechuga, L.M., Armelles, G.. Highly sensitive detection of biomolecules with the magneto-optic surface-plasmon-resonance sensor. Opt. Lett., 31 (2006), 1085-1087. CrossRefGoogle ScholarPubMed
Newman, D.M., Matelon, R.J., Wears, M.L., Savage, L.B.. The In Vivo Diagnosis of Malaria : Feasibility Study Into a Magneto-Optic Fingertip Probe. IEEE J. Sel Top. Quant. Elec., 16 (2010), 573-580. CrossRefGoogle Scholar
Bahuguna, R., Mina, M., Weber, R.J.. Mach-Zehnder interferometric switch utilizing Faraday rotation. IEEE Trans. Mag., 43 (2007), 2680-2682. CrossRefGoogle Scholar
Eldada, L.. Optical communication components. Rev. Sci. Instrum., 75 (2004), 575-593. CrossRefGoogle Scholar
Yang, K., Clavero, C., Skuza, J. R., Varela, M., Lukaszew, R. A.. Surface plasmon resonance and magneto-optical enhancement on Au–Co nanocomposite thin films. J. Appl. Phys., 107 (2010), 103924-5. CrossRefGoogle Scholar
Jain, P.K., Xiao, Y., Walsworth, R., Cohen, A.E.. Surface Plasmon Resonance Enhanced Magneto-Optics (SuPREMO) : Faraday Rotation Enhancement in Gold-Coated Iron Oxide Nanocrystals. Nano Lett., 9 (2009), 1644-1650. CrossRefGoogle ScholarPubMed
Pazos-Perez, N., Gao, Y., Hilgendorff, M., Irsen, S., Pereez-Juste, J., Spasova, M., Farle, M., Liz-Marzan, L.M., Giersig, M.. Magnetic-noble metal nanocomposites with morphology-dependent optical response. Chem. Mat., 19 (2007), 4415-4422. CrossRefGoogle Scholar
Ajaev, V.S., Willis, D.A.. Thermocapillary flow and rupture in films of molten metal on a substrate. Phys. Fluids, 15 (2003), 3144-7; Heat transfer, phase change, and thermocapillary flow in films of molten metal on a substrate. Numer. Heat Transfer, Part A, 50 (2006), 301-313. CrossRefGoogle Scholar
Basu, A.S., Gianchandani, Y.B.. Shaping high-speed Marangoni flow in liquid films by microscale perturbations in surface temperature. Appl. Phys. Lett., 90 (2007), 034102-3. CrossRefGoogle Scholar
Higuera, F.J.. Steady thermocapillary-buoyant flow in an unbounded liquid layer heated nonuniformly from above. Phys. Fluids, 12 (2000), 2186-12. CrossRefGoogle Scholar
Oron, A., Peles, Y.. Stabilization of thin liquid films by internal heat generation. Phys. Fluids, 10 (1998), 537-3. CrossRefGoogle Scholar
Oron, A.. Nonlinear dynamics of irradiated thin volatile liquid films. Phys. Fluids, 12 (2000), 29-13. CrossRefGoogle Scholar
Grigoriev, R.O.. Control of evaporatively driven instabilities of thin liquid films. Phys. Fluids, 14 (2002), 1895-15. CrossRefGoogle Scholar
Kondic, L., Diez, J.A., Rack, Philip D., Guan, Yingfeng, Fowlkes, Jason D.. Nanoparticle assembly via the dewetting of patterned thin metal lines : Understanding the instability mechanisms. Phys. Rev. E, 79 (2009), 026302-7. CrossRefGoogle Scholar
Wu, Y., Fowlkes, J. D., Rack, P. D., Diez, J. A., Kondic, L.. On the Breakup of Patterned Nanoscale Copper Rings into Droplets via Pulsed-Laser-Induced Dewetting : Competing Liquid-Phase Instability and Transport Mechanisms. Langmuir, 26 (2010), 11972-11979. CrossRefGoogle ScholarPubMed
Wu, Y., Fowlkes, J. D., Roberts, N. A., Diez, J. A., Kondic, L., Gonzalez, A. G., Rack, P. D.. Competing liquid phase instabilities during pulsed laser induced self-assembly of copper rings into ordered nanoparticle arrays on SiO2. Langmuir, 27 (2011), 13314-13323. CrossRefGoogle ScholarPubMed
Krishna, H., Shirato, N., Favazza, C., Kalyanaraman, R.. Energy driven self-organization in nanoscale metallic liquid films. Phys. Chem. Chem. Phys., 11 (2009), 8136-8143. CrossRefGoogle ScholarPubMed
Atena, A., Khenner, M.. Thermocapillary effects in driven dewetting and self-assembly of pulsed-laser-irradiated metallic films. Phys. Rev. B, 80 (2009), 075402-11. CrossRefGoogle Scholar
Oron, A., Davis, S.H., Bankoff, S.G.. Long scale evolution of thin liquid films. Rev. Mod. Phys., 69 (1997), 931-980. CrossRefGoogle Scholar
Khenner, M., Yadavali, S., Kalyanaraman, R.. Formation of organized nanostructures from unstable bilayers of thin metallic liquids, Phys. Fluids, 23 (2011), 122105-14. CrossRefGoogle Scholar
Favazza, C., Kalyanaraman, R., Sureshkumar, R.. Dynamics of ultrathin metal films on amorphous substrates under fast thermal processing. J. Appl. Phys., 102 (2007), 104308-6. CrossRefGoogle Scholar
Derjaguin, B.V., Leonov, L.F., Roldughin, V.I.. Disjoining pressure in liquid metallic films. J. Colloid Interface Sci., 108 (1985), 207-214; also in : Prog. Surf. Sci. 40 (1992), 232-239. CrossRefGoogle Scholar
S. Yadavali, R. Kalyanaraman. Morphology transitions in ternary dewetting systems. Submitted.
S. Yadavali, R. Kalyanaraman. Thermal modeling for multilayer thin films using pulsed laser induced dewetting. In preparation.
Prentice, J.S.C.. Coherent, partially coherent and incoherent light absorption in thin-film multilayer structures. J. Phys. D : Appl. Phys., 33 (2000), 3139-3145. CrossRefGoogle Scholar
Davis, S.H.. On the principle of exchange of stabilities. Proc. Roy. Soc. Ser. A, 310 (1969), 341-358. CrossRefGoogle Scholar
V.M. Starov, M.G. Velarde, C.J. Radke. Wetting and Spreading Dynamics. CRC, Boca Raton, 2007.
J. Israelachvili. Intermolecular and Surface Forces. Academic, London, 1991.
Hairer, E., Wanner, G.. Stiff differential equations solved by Radau method. J. Comput. Appl. Math., 111 (1999), 93-111. CrossRefGoogle Scholar
Brown, P. N., Byrne, G. D., Hindmarsh, A. C.. VODE : A variable coefficient ODE solver. SIAM J. Sci. Stat. Comput., 10 (1989), 1038-1051. CrossRefGoogle Scholar
Ward, M.H.. Interfacial thin films rupture and self-similarity. Phys. Fluids, 23 (2011), 062105-14. CrossRefGoogle Scholar
Glasner, K., Witelski, T.. Coarsening dynamics of dewetting films. Phys. Rev. E, 67 (2003), 016302-12. CrossRefGoogle ScholarPubMed