Hostname: page-component-7bb8b95d7b-2h6rp Total loading time: 0 Render date: 2024-09-16T21:59:53.116Z Has data issue: false hasContentIssue false

MathematicalModelling of Tumour Dormancy

Published online by Cambridge University Press:  05 June 2009

K. M. Page*
Affiliation:
Department of Mathematics, UCL, London WC1E 6BT, UK
Get access

Abstract

Many tumours undergo periods in which they apparently do not grow but remain at a roughly constant size for extended periods. This is termed tumour dormancy. The mechanisms responsible for dormancy include failure to develop an internal blood supply, individual tumour cells exiting the cell cycle and a balance between the tumour and the immune response to it. Tumour dormancy is of considerable importance in the natural history of cancer. In many cancers, and in particular in breast cancer, recurrence can occur many years after surgery to remove the primary tumour, following a long period of occult disease. Mathematical modelling suggested that continuous growth of tumours was incompatible with data of the times of recurrence in breast cancer, suggesting that tumour dormancy was a common phenomenon. Modelling has also been applied to understanding the mechanisms responsible for dormancy, how they can be manipulated and the implications for cancer therapy. Here, the literature on mathematical modelling of tumour dormancy is reviewed. In conclusion, promising future directions for research are discussed.

Type
Research Article
Copyright
© EDP Sciences, 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Klein, C.A., Hoelzel, D.. Systemic cancer progression and tumor dormancy: mathematical models meet single cell genomics. Cell Cycle, 5 (2006), No. 16, 17881798. CrossRef
R.A. Willis. The Spread of Tumors in the Human Body. Butterworth and Co. Ltd., London, 1952.
Aguirre-Ghiso, J.A.. Models, mechanisms and clinical evidence for cancer dormancy. Nature Rev. Cancer, 7 (2007), No. 11, 834846. CrossRef
Karrison, T.G., Ferguson, D.J., Meier, P.. Dormancy of Mammary Carcinoma after Mastectomy. J. Natl. Cancer Inst., 91 (1999), No. 1, 8085. CrossRef
Weckermann, D., Mueller, P., Wawroschek, F., Harzmann, R., Riethmueller, G., Schlimok, G.. Disseminated Cytokeratin Positive Tumour Cells in the Bone Marrow of Patients with Prostate Cancer: Detection and Prognostic value. J. Urol., 166 (2001), No. 2, 699703. CrossRef
Early Breast Cancer Trialists' Collaborative Group (EBCTCG). Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. Lancet, 365 (2005), No. 9472, 1687–1717.
Saphner, T., Tormey, D.C., Gray, R.. Annual hazard rates of recurrence for breast cancer after primary therapy. J. Clin. Oncol., 14 (1996), No. 10, 27382746. CrossRef
Rutqvist, L.E., Wallgren, A., Nilsson, B.. Is breast cancer a curable disease? A study of 14,731 women with breast cancer from the cancer registry of Norway. Cancer, 53 (1984), No. 8, 17931800. 3.0.CO;2-Y>CrossRefPubMed
S. Meng, D. Tripathy, E.P. Frenkel, S. Shete, E.Z. Naftalis, J.F. Huth, P.D. Beitsch, M. Leitch, S. Hoover, D. Euhus, B. Haley, L. Morrison, T.P. Fleming, D. Herlyn, L.W.M.M. Terstappen, T. Fehm, T.F. Tucker, N. Lane, J. Wang, J.W. Uhr. Circulating tumour cells in patients with breast cancer dormancy. Clin. Cancer Res., 10, (2004), No. 24, 8152–8162.
Norton, L., Simon, R., Brereton, H.D., Bogden, A.E.. Predicting the course of Gompertzian growth. Nature, 264 (1976), No. 5586, 542545. CrossRef
Retsky, M.W., Demicheli, R., Swartzendruber, D.E., Bame, P.D., Wardwell, R.H., Bonadonna, G., Speer, J.F., Valagussa, P.. Computer Simulation of a breast cancer metastasis model. Breast Cancer Res. and Treat., 45 (1997), No. 2, 193202. CrossRef
Bloom, H.J.G., Richardson, W.W. and Harries, E.J.. Natural history of untreated breast cancer (1805-1933). Br. Med. J., 2 (1962), No. 5299, 213221. CrossRef
Clare, S.E., Nakhlis, F., Panetta, J.C.. Molecular biology of breast cancer metastasis: the use of mathematical models to determine relapse and to predict response to chemotherapy in breast cancer. Breast Cancer Res., 2 (2000), No. 6, 430435. CrossRef
R. Demicheli, A. Abbatista, R. Micheli, P. Valagussa, G. Bonadonna. Time distribution of the recurrence risk for breast cancer patients undergoing mastectomy: further support about the concept of tumor dormancy. Breast Cancer Res. Treat., 41 (1996), No. 2, 177–185.
Demicheli, R., Micheli, R., Valagussa, P., Bonadonna, G.. re: Dormancy of mammary carcinoma after mastectomy. J. Natl. Cancer Inst., 92 (1999), No. 4, 347348. CrossRef
Demicheli, R.. Tumour dormancy: findings and hypotheses from clinical research on breast cancer. Semin. Cancer Biol., 11 (2001), No. 4, 297305. CrossRef
T.G. Karrison, D.J. Ferguson, P. Meier. RESPONSE: re: Dormancy of mammary carcinoma after mastectomy., J. Natl. Cancer Inst., 92 (1999), No. 4, 348.
Brackstone, M., Townson, J.L., Chambers, A.F.. Tumour dormancy in breast cancer: an update. Breast Cancer Res., 9 (2007), No. 3, 208. CrossRef
Araujo, R.P. and McElwain, D.L.S.. A history of the study of solid tumour growth: the contribution of mathematical modelling. Bull. Math. Biol., 66 (2004), No. 5, 10391091. CrossRef
Bellomo, N., Li, N.K., Maini, P.K.. On the foundations of cancer modelling: selected topics, speculations and perspectives. Math. Models Methods Appl. Sci., 18 (2008), No. 4, 593646. CrossRef
Folkman, J.. Tumor angiogenesis: therapeutic implications. N. Eng J. Med., 285 (1971), No. 21, 11821186. CrossRef
Folkman, J.. Angiogenesis in cancer, vascular, rheumatoid and other diseases. Nature Med., 1 (1995), No. 1, 2731. CrossRef
Holmgren, L., O'Reilly, M.S., Folkman, J.. Dormancy of micrometastases: Balanced proliferation and apoptosis in the presence of angiogenesis suppression. Nature Med., 1 (1995), No. 2, 149153. CrossRef
M.S. O'Reilly, L. Holmgren, Y. Shing, C. Chen, R.A. Rosenthal, M. Moses, W.S. Lane, Y. Cao, E.H. Sage, J. Folkman. Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 79 (1994), No. 2, 315–328.
Hanahan, D., Folkman, J.. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell, 86 (1996), No. 3, 353364. CrossRef
Risau, W., Sariola, H., Zerwes, H.-G., Sasse, J., Ekblom, P., Kemler, R., Doetschmann, T.. Vasculogenesis and angiogenesis in embryonic-stem-cell-derived embryoid bodies. Development, 102 (1988), No. 3, 471478.
Risau, W.. Mechansims of angiogenesis. Nature, 386 (1997), No. 6626, 671674. CrossRef
Bolontrade, M.F., Zhou, R.R., Kleinerman, E.S.. Vasculogenesis plays a role in the growth of Ewing's sarcoma in vivo. Clin. Cancer Res., 8 (2002), No. 11, 36223627.
Ribatti, D., Vacca, A., Dammacco, F.. New non-angiogenesis dependent pathways of tumour growth. Eur. J. Cancer, 39 (2003), No. 13, 18351841. CrossRef
Mantzaris, N.V., Webb, S., Othmer, H.G.. Mathematical modeling of tumor-induced angiogenesis. J. Math. Biol., 49 (2004), No. 2, 111187.
Chaplain, M.A.J., McDougall, S.R., Anderson, A.R.A.. Mathematical modeling of tumor-induced angiogenesis. Annu. Rev. Biomed. Eng., 8 (2006), 233257. CrossRef
M. Baum, M.A.J. Chaplain, A.R.A. Anderson, M. Douek, J.S. Vaidya. Does breast cancer exist in a state of chaos?, Europ. J. Cancer, 35 (1999), No. 6, 886–891.
Anderson, A.R.A, Chaplain, M.A.J.. Continuous and discrete models mathematical models of tumor-induced angiogenesis. Bull. Math. Biol., 60 (1998), No. 5, 857899. CrossRef
Muthukkaruppan, V.R., Kubai, L., Auerbach, R.. Tumor-induced neovascularization in the mouse eye. J. Natl. Cancer Inst., 69 (1982), No. 3, 699705.
Alarcon, T., Byrne, H.M., Maini, P.K.. A cellular automaton model for tumour growth in inhomogeneous environment. J. Theor. Biol., 225 (2003), No. 2, 257274. CrossRef
M.R. Owen, T. Alarcon, P.K. Maini, H.M. Byrne. Angiogenesis and vascular remodelling in normal and cancerous tissues. J. Math. Biol., 58 (2009), No.s 4-5, 689–721.
McDougall, S.R., Anderson, A.R.A., Chaplain, M.A.J., Sherratt, J.A.. Mathematical modelling of flow through vascular networks: implications for tumour-induced angiogenesis and chemotherapy strategies. Bull. Math. Biol., 64 (2002), No. 4, 673702. CrossRef
Welter, M., Bartha, K., Rieger, H.. Emergent vascular network inhomogeneities and resulting blood flow patterns in a growing tumor. J. Theor. Biol., 250 (2008), No. 2, 257280. CrossRef
Pries, A.R., Secomb, T.W., Gaehtgens, P.. Biophysical aspects of blood flow in the microvasculature. Cardiovsacular Research, 32 (1996), No. 4, 654667. CrossRef
Pries, A.R., Secomb, T.W., Gaehtgens, P.. Structural adaptation and stability of microvascular networks: theory and simulations. Am. J. Physiol. Heart Circ. Physiol., 275 (1998), No. 2, H349H360.
Pries, A.R., Reglin, B., Secomb, T.W.. Structural adaptation of microvascular networks: functional roles of adaptive responses. Am. J. Physiol. Heart Circ. Physiol., 281 (2001), No. 3, H1015H1025.
H.V. Jain, J.E. Noer, T.L. Jackson. Modeling the VEGF-Bcl-2-CXCL8 pathway in intratumoral angiogenesis. Bull. Math. Biol., 70 (2008), No. 1, 89–117.
Wodarz, D., Iwasa, Y., Komarova, N.L.. On the emergence of multifocal cancers. J. Carcinogenesis, 3 (2004), 13. CrossRef
D. Wodarz, N.L. Komarova. Computational biology of cancer: lecture notes and mathematical modeling. World Scientific Publishing, Singapore, 2005.
Ramanujan, S., Koenig, G.C., Padera, T.P., Stoll, B.R., Jain, R.K.. Local imbalance of proangiogenic and antiangiogenic factors: a potential mechanism of focal necrosis and dormancy in tumors. Cancer Research, 60 (2000), No. 5, 14421448.
Wodarz, D., Krakauer, D.C.. Genetic instability and the evolution of angiogenic tumor cell lines. Oncology Reports, 8 (2001), No. 6, 11951201.
Plank, M.J., Sleeman, B.D., Jones, P.F.. A Mathematical Model of Tumour Angiogenesis, Regulated by Vascular Endothelial Growth Factor and the Angiopoietins. J. Theor. Biol., 229 (2004), No. 4, 435454. CrossRef
Othmer, H.G., Stevens, A.. Aggregation, blowup, and collapse: the ABC's of taxis in reinforced random walks. SIAM J. Appl. Math., 57 (1997), No. 4, 10441081.
Naumov, G.N., Bender, E., Zurakowski, D., Kand, S.-Y., Sampson, D., Flynn, E., Watnick, R.S., Straume, O., Akslen, L.A., Folkman, J., Almog, N.. A model of human tumor dormancy: an angiogenic switch from the nonangiogenic phenotype. J. Natl. Cancer Inst., 98 (2006), No. 5, 316325. CrossRef
Bergers, G., Benjamin, L.E.. Tumorigenesis and the angiogenic switch. Nature Rev. Cancer, 3 (2002), No. 6, 401410. CrossRef
Abdollahi, A., Schwager, C., Kleeff, J., Esposito, I., Domhan, S., Peschke, P., Hauser, K., Hahnfelt, P., Hlatky, L., Debus, J., Peters, J.M., Friess, H., Folkman, J., Huber, P.E.. Transcriptional network governing the angiogenic switch in human pancreatic cancer. PNAS, 104 (2007), No. 21, 1289012895. CrossRef
Logan, P.T., Fernandes, B.F., Di Cesare, S., Marshall, J.-C.A., Maloney, S.C., Burnier, M.N.. Single-cell tumor dormancy model of uveal melanoma. Clin. Exp. Metastasis, 25 (2008), No. 5, 509516. CrossRef
Townson, J.L., Chambers, A.F.. Dormancy of solitary metastatic cells. Cell Cycle, 5 (2006), No. 16, 17441750. CrossRef
Naumov, G.N., MacDonald, I.C., Weinmeister, P.M., Kerkvliet, N., Nadkarni, K.V., Wilson, S.M., Morris, V.L., Groom, A.C., Chambers, A.F.. Persistence of solitary mammary carcinoma cells in a secondary site: a possible contributor to dormancy. Cancer Res., 62 (2002), No. 7, 21622168.
Aguirre-Ghiso, J.A., Liu, D., Mignatti, A., Kovalski, K., Ossowaki, L.. Urokinase receptor and fibronectin regulate the ERK(MAPK) to p38(MAPK) activity ratios that determine carcinoma cell proliferation or dormancy in vivo. Mol. Biol. Cell, 12 (2001), No. 4, 863879. CrossRef
Shachaf, C.M., Kopelman, A.M., Arvanitis, C., Karlsson, Å., Beer, S., Mandl, S., Bachmann, M.H., Borowsky, A.D., Ruebner, B., Cardiff, R.D., Yang, Q., Bishop, J.M., Contag, C.H., Felsher, D.W.. MYC inactivation uncovers pluripotent differentiation and tumour dormancy in hepatocellular carcinoma. Nature, 431 (2004), No. 7012, 11121117. CrossRef
Guba, M., Cernaianu, G., Koehl, G., Geissler, E.K., Jauch, K.-W., Anthuber, M., Falk, W., Steinbauer, M.. A primary tumor promotes dormancy of solitary tumor cells before inhibiting angiogenesis. Cancer Res., 61 (2001), No. 14, 55755579.
A.L. Allan, S.A. Vantyghem, A.B. Tuck, A.F. Chambers. Tumor dormancy and cancer stem cells: implications for the biology and treatment of breast cancer metastasis. Breast Disease, 26 (2006, 2007), No. 1, 87–98.
Balic, M., Lin, H., Young, L., Hawes, D., Giuliano, A., McNamara, G., Datar, R.H., Cote, R.J.. Most early disseminated cancer cells detected in bone marrow of breast cancer patients have a putative stem cell phenotype. Clin. Cancer Res., 12 (2006), No. 19, 56155621. CrossRef
Alarcon, T., Marches, R., Page, K.M.. Mathematical models of the fate of lymphoma B cells after antigen receptor ligation with specific antibodies. J. Theor. Biol., 240 (2006), No. 1, 5471.
T. Alarcon, H.M. Byrne, P.K. Maini. Towards whole organ modelling of tumour growth. Prog. Biophys. Mol. Biol. 85 (2004), No.s 2–3, 451–472.
Alarcon, T., Byrne, H.M., Maini, P.K.. A multiple scale model for tumor growth. Multiscale Model. Simul., 3 (2005), No. 2, 440475. CrossRef
Byrne, H.M., Owen, M.R., Alarcon, T., Murphy, J., Maini, P.K.. Modelling the response of vascular tumours to chemotherapy. Math. Mod. Meth. Appl. Sci., 16 (2006), No. 7S, 12191241. CrossRef
Ribba, B., Colin, T., Schnell, S.. A mathematical model of cancer and its use in analyzing irradiation therapies. Theor. Biol. Med. Model., 3 (2006), 7. CrossRefPubMed
Hatzimanikatis, V., Lee, K.H., Bailey, J.E.. A mathematical description of refulation of the G1-S transition of the mammalian cell cycle. Biotechnol. bioeng., 65 (1999), No. 6, 631637. 3.0.CO;2-7>CrossRef
M. Gyllenberg. G.F. Webb. Quiescence as an explanation of Gompertzian tumor growth. Growth, dev. aging, 86 (1987), No.s 1-2, 67–95.
N.L. Komarova, D. Wodarz. Effect of cellular quiescence on the success of targeted CML therapy. PLoS ONE, 2 (2007), No. 10, e990.
Uhr, J.W., Scheuermann, R.H., Street, N.E., Vitetta, E.S.. Cancer dormancy: opportunities for new therapeutic approaches. Nature Med., 3 (1997), No. 5, 505509. CrossRef
B. Quesnel. Dormant tumor cells as a therapeutic target? Cancer Lett., 267 (2008), No. 1, 10–17.
Dunn, G.P., Bruce, A.T., Ikeda, H., Old, L.J., Schreiber, R.D.. Cancer immunoediting: from immunosurveillance to tumor escape. Nature Immunology, 3 (2002), No. 11, 991999. CrossRef
Weinhold, K.J., Goldstein, L.T., Wheelock, E.F.. Tumour-dormant states established with L5178Y lymphoma cells in immunised syngeneic murine hosts. Nature, 270 (1977), No. 5632, 5961. CrossRef
Siu, H., Vitetta, E.S., May, R.D., Uhr, J.W.. Tumor dormancy. I. Regression of BCL1 tumor and induction of a dormant tumor state in mice chimeric at the major histocompatibility complex. J. Immunol., 137 (1986), No. 4, 13761382.
Clemente, C.G., Mihm Jr, M.C.., R. Bufalino, S. Zurrida, P. Collini, N. Cascinelli. Prognostic value of tumor infiltrating lymphocytes in the vertical growth phase of primary cutaneous melanoma. Cancer, 77 (1996), No. 7, 13031310. 3.0.CO;2-5>CrossRef
Galon, J., Costes, A., Sanchez-Cabo, F., Kirilovsky, A., Mlecnik, B., Lagorce-Pagès, C., Tosolini, M., Camus, M., Berger, A., Wind, P., Zinzindohoué, F., Bruneval, P., Cugnenc, P.-H., Trajanoski, Z., Fridman, W.-H., Pagès, F.. Type, density and location of immune cells within human colorectal tumors predict clinical outcome. Science, 313 (2006), No. 5795, 19601964. CrossRef
Sato, E., Olson, S. H., Ahn, J., Bundy, B., Nishikawa, H., Qian, F., Jungbluth, A.A., Frosina, D., Gnjatic, S., Ambrosone, C., Kepner, J., Odunsi, T., Ritter, G., Lele, S., Chen, Y.-T., Ohtani, H., Old, L.J., Odunsi, K.. Intraepithelial CD8+ tumor-infiltrating lymphocytes and a high CD8+/regulatory T cell ratio are associated with favorable prognosis in ovarian cancer. Proc. Natl. Acad. Sci., 102 (2005), No. 51, 1853818543. CrossRef
Koebel, C.M., Vermi, W., Swann, J.B., Zerafa, N., Rodig, S.J., Old, L.J., Smyth, M.J., Schreiber, R.D.. Adaptive immunity maintains occult cancer in an equilibrium state. Nature, 450 (2007), No. 7171, 903907. CrossRef
Page, K.M., Uhr, J.W.. Mathematical models of cancer dormancy. Leukemia and Lymphoma, 46 (2005), No. 3, 313327. CrossRef
Kuznetsov, V.A., Makalkin, I.A., Taylor, M.A., Perelson, S.. Nonlinear dynamics of immunogenic tumors: parameter estimation and global bifurcation analysis. Bull. Math. Biol., 56 (1994), No. 2, 295321. CrossRef
V.A. Kuznetsov, G.D. Knott. Modeling tumor regrowth and immunotherapy. Math. Comp. Modelling, 33 (2001), No.s 12–13, 1275–1287.
J.A. Adam, N. Bellomo. A survey of tumor-immune system dynamics (modeling and simulation in science, engineering and technology). Birkhaeuser, Boston, 1996.
N. Bellomo, L. Preziosi. Modelling and mathematical problems related to tumor evolution and its interaction with the immune system. Math. Comp. Model., 32 (2000), No.s 3–4, 413–452.
Kirschner, D., Panetta, J.C.. Modeling immunotherapy of the tumor-immune interaction. J. Math. Biol., 37 (1998), No. 3, 235252. CrossRef
De Pillis, L.G., Gu, W., Radunskaya, A.E.. Mixed immunotherapy and chemotherapy of tumors: modeling, applications and biological interpretations. J. Theor. Biol., 238 (2006), No. 4, 841862. CrossRef
Diefenbach, A., Jensen, E.R., Jamison, A.M., Raulet, D.. Rae1 and H60 ligands of the NKG2D receptor stimulate tumor immunity. Nature, 413 (2001), No. 6852, 165171. CrossRef
Wodarz, D.. Use of oncolytic viruses for the eradication of drug-resistant cancer cells. J. R. Soc. Interface, 6 (2009), No. 31, 179186. CrossRef
D. Wodarz, N. Komarova. Towards predictive computational models of oncolytic virus therapy: basis for experimental validation and model selection. PLoS One, 4 (2009) , No. 1, e4271.
Matzavinos, A., Chaplain, M.A.J., Kuznetsov, V.A.. Mathematical modelling of the spatio-temporal response of cytotoxic T-lymphocytes to a solid tumour. Math. Medicine and Biology: A Journal of the IMA, 21 (2004), No. 1, 134. CrossRef
A. Matzavinos. Dynamic irregular patterns and invasive wavefronts: the control of tumour growth by cytotoxic T-lymphcytes. In: Selected topics in cancer modeling (modeling and simulation in science engineering and technology), Birkhauser, Boston, 2008.
Le Serve, A.W., Hellman, K.. Metastases and the normalization of tumour blood vessels by ICRF 159: a new type of drug action. Br. Med. J., 1 (1972), No. 5800, 597601. CrossRef