Hostname: page-component-5c6d5d7d68-wtssw Total loading time: 0 Render date: 2024-08-30T05:59:52.291Z Has data issue: false hasContentIssue false

Metapopulation Dynamics and the Evolution of Sperm Parasitism

Published online by Cambridge University Press:  28 May 2014

K. Parvinen*
Affiliation:
Department of Mathematics and Statistics, FI-20014 University of Turku Evolution and Ecology Program, International Institute for Applied Systems Analysis, A-2361 Laxenburg, Austria
*
Corresponding author. E-mail: kalparvi@utu.fi
Get access

Abstract

Amazon molly (Poecilia formosa) females reproduce asexually, but they need sperm to initiate the process. Such gynogenetic reproduction can be called sperm parasitism since the DNA in the sperm is not used. Since all offspring of asexually reproducing females are females, they can locally outcompete sexually reproducing ones, but their persistence is threatened by the lack of males. Therefore, the existence of Amazon mollies is puzzling. A metapopulation structure has been suggested to enable the coexistence of gynogenetic and sexual species. Previously only Levins-type metapopulation models have been used to investigate this question, but they are not defined on the individual level. Therefore we investigate the evolution of sperm parasitism in a structured metapopulation model, which incorporates both realistic local population dynamics and individual-level dispersal. If the reproduction strategy is freely evolving in a large well-mixed population or in the structured metapopulation model, strong discrimination of asexually reproducing females by males results in evolution to full sexuality, whereas mild discrimination leads to too small probability of sexual reproduction, so that the lack of males causes the extinction of the evolving population, resulting in evolutionary suicide. This classification remains the same also when both sexual reproduction and dispersal are freely evolving. Sexual and asexual behaviour can be observed at the same time in this model in the presence of a trade-off between the reproduction and dispersal traits. However, we do not observe disruptive selection resulting in the evolutionarily stable coexistence of fully sexual and fully asexual females. Instead, the presence of sexual and asexual behaviour is due to females with a mixed reproduction trait.

Type
Research Article
Copyright
© EDP Sciences, 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

R. D. Alexander. Darwinism and human affairs. Seattle, University of Washington Press, 1979.
R. D. Alexander. The biology of moral systems. New York, Aldine de Gruyter, 1987.
Beukeboom, L. W., Vrijenhoek, R. C.. Evolutionary genetics and ecology of sperm-dependent parthenogenesis. J. Evol. Biol, 11 (1998), 755782. CrossRefGoogle Scholar
Brännström, Å., Dieckmann, U.. Evolutionary dynamics of altruism and cheating among social amoebas. Proc. R. Soc. London B, 272 (2005), 16091616. CrossRefGoogle ScholarPubMed
Brännström, Å., Sumpter, D. J. T.. The role of competition and clustering in population dynamics. Proc. R. Soc. London B, 272 (2005), 20652072. CrossRefGoogle ScholarPubMed
Christiansen, F. B.. On conditions for evolutionary stability for a continuously varying character. Am. Nat., 138 (1991), 3750. CrossRefGoogle Scholar
Doebeli, M., Hauert, C., Killingback, T.. The evolutionary origin of cooperators and defectors. Science, 306 (2004), 859862. CrossRefGoogle Scholar
Eshel, I.. Evolutionary and continuous stability. J. Theor. Biol., 103 (1983), 99111. CrossRefGoogle Scholar
Eskola, H., Geritz, S. A. H.. On the mechanistic derivation of various discrete-time population models. Bull. Math. Biol., 69 (2007), 329346. CrossRefGoogle ScholarPubMed
Eskola, H., Parvinen, K.. On the mechanistic underpinning of discrete-time population models with Allee effect. Theor. Popul. Biol., 72 (2007), 4151. CrossRefGoogle ScholarPubMed
Eskola, H., Parvinen, K.. The Allee effect in mechanistic models based on inter-individual interaction processes. Bull. Math. Biol., 72 (2010), 184207. CrossRefGoogle ScholarPubMed
R. Ferrière. Adaptive responses to environmental threats: evolutionary suicide, insurance, and rescue. Options Spring 2000, IIASA, Laxenburg, Austria, 12–16, 2000.
Fletcher, J. A., Doebeli, M.. A simple and general explanation for the evolution of altruism. Proc. R. Soc. London B, 276 (2009), 1319. CrossRefGoogle ScholarPubMed
Geritz, S. A. H., Kisdi, É., Meszéna, G., Metz, J. A. J.. Evolutionarily singular strategies and the adaptive growth and branching of the evolutionary tree. Evol. Ecol., 12 (1998), 3557. CrossRefGoogle Scholar
Geritz, S. A. H., Metz, J. A. J., Kisdi, É., Meszéna, G.. Dynamics of adaptation and evolutionary branching. Phys. Rev. Lett., 78 (1997), 20242027. CrossRefGoogle Scholar
Gyllenberg, M., Metz, J. A. J.. On fitness in structured metapopulations. J. Math. Biol., 43 (2001), 545560. CrossRefGoogle ScholarPubMed
Gyllenberg, M., Parvinen, K.. Necessary and sufficient conditions for evolutionary suicide. Bull. Math. Biol., 63 (2001), 981993. CrossRefGoogle ScholarPubMed
Gyllenberg, M., Parvinen, K., Dieckmann, U.. Evolutionary suicide and evolution of dispersal in structured metapopulations. J. Math. Biol., 45 (2002), 79105. CrossRefGoogle Scholar
Hamilton, W. D.. The genetical evolution of social behaviour I. J. Theor. Biol, 7 (1964), 116. CrossRefGoogle ScholarPubMed
Hamilton, W. D.. The genetical evolution of social behaviour II. J. Theor. Biol, 7 (1964), 1752. CrossRefGoogle ScholarPubMed
Heubel, K., Rankin, D., Kokko, H.. How to go extinct by mating too much: population consequences of male mate choice and efficiency in a sexual-asexual species complex. Oikos, 118 (2009), 513520. CrossRefGoogle Scholar
Kokko, H., Heubel, K., Rankin, D.. How populations persist when asexuality requires sex: the spatial dynamics of coping with sperm parasites. Proc. R. Soc. London B, 275 (2008), 817825. CrossRefGoogle ScholarPubMed
Kokko, H., Heubel, K. U.. Prudent males, group adaptation, and the tragedy of the commons. Oikos, 120 (2011), 641656. CrossRefGoogle Scholar
Levins, R.. Some demographic and genetic consequenses of environmental heterogeneity for biological control. Bull. Entomol. Soc. Am., 15 (1969), 237240. Google Scholar
R. Levins. Extinction. In M. Gerstenhaber, editor, Some Mathematical Problems in Biology. American Mathematical Society, Providence, RI, (1970), 77–107.
Matsuda, H.. Evolutionarily stable strategies for predator switching. J. Theor. Biol, 115 (1985), 351366. CrossRefGoogle Scholar
Maynard Smith., J. Evolution and the theory of games. Amer. Sci., 64 (1976), 4145. Google Scholar
Mee, J. A., Noddin, F., Hanisch, J. R., Tonn, W. M., Paszkowski, C. A.. Diets of sexual and sperm-dependent asexual dace (Chrosomus spp.): relevance to niche differentiation and mate choice hypotheses for coexistence. Oikos, 122 (2013), 9981008. CrossRefGoogle Scholar
Mee, J. A., Otto, S. P.. Variation in the strength of male mate choice allows long-term. Evolution, 64 (2010), 28082819. Google ScholarPubMed
J. A. J. Metz, S. A. H. Geritz, G. Meszéna, F. J. A. Jacobs, J. S. van Heerwaarden. Adaptive dynamics, a geometrical study of the consequenses of nearly faithful reproduction. In S. J. van Strien and S. M. Verduyn Lunel, editors, Stochastic and Spatial Structures of Dynamical Systems. North-Holland, Amsterdam, (1996), 183–231.
Metz, J. A. J., Gyllenberg, M.. How should we define fitness in structured metapopulation models? Including an application to the calculation of ES dispersal strategies. Proc. R. Soc. London B, 268 (2001), 499508. CrossRefGoogle Scholar
Metz, J. A. J., Nisbet, R. M., Geritz, S. A. H.. How should we define “fitness” for general ecological scenarios? Trends Ecol. Evol., 7 (1992), 198202. CrossRefGoogle ScholarPubMed
Moore, W. S.. Components of fitness in a unisexual fish Poeciliopsis monacha-occidentalis. Evolution, 30 (1976), 564578. Google Scholar
Nowak, M. A., Sigmund, K.. The dynamics of indirect reciprocity. J. Theor. Biol, 194 (1998), 561574. CrossRefGoogle ScholarPubMed
Nowak, M. A., Sigmund, K.. Evolution of indirect reciprocity by image scoring. Nature, 393 (1998), 573577. CrossRefGoogle ScholarPubMed
Nowak, M. A., Sigmund, K.. Evolution of indirect reciprocity. Nature, 437 (2005), 12911298. CrossRefGoogle Scholar
Ohtsuki, H., Iwasa, Y.. The leading eight: Social norms that can maintain cooperation by indirect reciprocity. J. Theor. Biol., 239 (2006), 435444. CrossRefGoogle ScholarPubMed
Parvinen, K.. Evolutionary suicide. Acta Biotheoretica, 53 (2005), 241264. CrossRefGoogle ScholarPubMed
Parvinen, K.. Evolution of dispersal in a structured metapopulation model in discrete time. Bull. Math. Biol., 68 (2006), 655678. CrossRefGoogle Scholar
Parvinen, K.. Evolutionary suicide in a discrete-time metapopulation model. Evol. Ecol. Res., 9 (2007), 619633. Google Scholar
Parvinen, K.. Adaptive dynamics of altruistic cooperation in a metapopulation: Evolutionary emergence of cooperators and defectors or evolutionary suicide? Bull. Math. Biol., 73 (2011), 26052626. CrossRefGoogle ScholarPubMed
Parvinen, K., Dieckmann, U.. Self-extinction through optimizing selection. J. Theor. Biol, 333 (2013), 19. CrossRefGoogle ScholarPubMed
K. Parvinen, U. Dieckmann. Evolutionary suicide. In U. Dieckmann and J. A. J. Metz, editors, Elements of Adaptive Dynamics. Cambridge University Press, (in press).
Parvinen, K., Dieckmann, U., Gyllenberg, M., Metz, J. A. J.. Evolution of dispersal in metapopulations with local density dependence and demographic stochasticity. J. Evol. Biol, 16 (2003), 143153. CrossRefGoogle ScholarPubMed
Parvinen, K., Metz, J. A. J.. A novel fitness proxy in structured locally finite metapopulations with diploid genetics, with an application to dispersal evolution. Theor. Popul. Biol., 73 (2008), 517528. CrossRefGoogle ScholarPubMed
Rueffler, C., Egas, M., Metz, J. A. J.. Evolutionary predictions should be based on individual-level traits. Am. Nat., 168 (2006), E148E162. CrossRefGoogle Scholar
Schley, D., Doncaster, C. P., Sluckin, T.. Population models of sperm-dependent parthenogenesis. J. Theor. Biol, 229 (2004), 559572. CrossRefGoogle ScholarPubMed
R. Sugden. The Evolution of Rights, Co-operation and Welfare.Oxford: Blackwell, 1986.
Sumpter, D. J. T., Broomhead, D. S.. Relating individual behaviour to population dynamics. Proc. R. Soc. London B, 268 (2001), 925932. CrossRefGoogle ScholarPubMed
Trivers, R.. The Evolution of Reciprocal Altruism. Q Rev Biol, 46 (1971), 3557. CrossRefGoogle Scholar
Van Tienderen, P. H., De Jong, G.. Sex ratio under the haystack model: Polymorphism may occur. J. Theor. Biol., 122 (1986), 6981. CrossRefGoogle Scholar
Vrijenhoek, R. C.. Factors affecting clonal diversity and coexistence. Am. Zool., 19 (1979), 787797. CrossRefGoogle Scholar