Hostname: page-component-77c89778f8-m8s7h Total loading time: 0 Render date: 2024-07-23T18:18:45.807Z Has data issue: false hasContentIssue false

On a criterion for hyperplane sections

Published online by Cambridge University Press:  24 October 2008

Lucian Bǎdescu
Affiliation:
Department of Mathematics, INCREST, 79622 Bucharest, Romania

Extract

Throughout this paper we shall fix an algebraically closed field k. Consider the following:

Problem. Let (Y, L) be a normal polarized variety over k, i.e. a normal projective variety Y over k together with an ample line bundle L on Y. Then one may ask under which conditions the following statement holds:

(*) Every normal projective variety X containing Y as an ample Cartier divisor such that the normal bundle of Y in X is L, is isomorphic to the projective cone over Y.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Atiyah, M. F. and Macdonald, I. G.. Introduction to commutative algebra (Adison-Wesley, 1969).Google Scholar
[2]Badescu, L.. On ample divisors. Nagoya Math. J. 86 (1982), 155171.CrossRefGoogle Scholar
[3]Badescu, L.. On ample divisors II. In Proceedings of the Week of Algebraic Geometry, Bucharest 1980. Teubner-Texte Math., Band 40, (Teubner-Verlag, 1981), 1232.Google Scholar
[4]Badescu, L.. Hyperplane sections and deformations. In Algebraic Geometry, Bucharest 1982. Lecture Notes in Math. vol. 1056 (Springer-Verlag, 1984), 133.CrossRefGoogle Scholar
[5]Beltrametti, M. and Robbiano, L.. Introduction to the theory of weighted projective spaces. Expo. Math. 4 (1986), 111162.Google Scholar
[6]Buium, A.. Weighted projective spaces as ample divisors. Rev. Roumaine Math. Pures Appl. 26, (1981), 833842.Google Scholar
[7]Delorme, C.. Espaces projectifs anisotropes. Bull. Soc. Math. France, 103 (1975), 203223.CrossRefGoogle Scholar
[8]Dolgachev, I.. Weighted projective varieties. In Group Actions and Vector Fields, in Lecture Notes in Math. vol. 956 (Springer-Verlag, 1982), pp. 3471.CrossRefGoogle Scholar
[9]Fujita, T.. Rational retractions onto ample divisors. Sci. Papers College Art. and Sciences Univ. Tokyo 33 (1983), 3339.Google Scholar
[10]Grothendieck, A.. Cohomologie locale des faisceaux cohérents et théorèmes de Lefschetz locaux et globaux (North-Holland, 1968).Google Scholar
[11]Hochster, M. and Roberts, J. L.. Rings of invariants of reductive groups acting on regular rings are Cohen–Macaulay. Adv. in Math. 13 (1974), 115175.CrossRefGoogle Scholar
[12]Mori, S.. On a generalization of complete intersections. J. Math. Kyoto Univ. 15 (1975), 619646.Google Scholar
[13]Pinkham, H.. Deformations of Algebraic Varieties with G n-action. Astérisque 2o (Sociéte Math. France, 1974).Google Scholar
[14]Schlessinger, M.. Functors on Artin rings. Trans. Amer. Math. Soc. 130 (1968), 208222.CrossRefGoogle Scholar
[15]Schlessinger, M.. Rigidity of quotient singularities. Invent. Math. 14 (1971), 1726.CrossRefGoogle Scholar
[16]Schlessinger, M.. On rigid singularities. Rice Univ. Stud. 59 (1973), 147162.Google Scholar
[17]Scorza, G.. Sopre una certa classe di varietà razionali. R. C. Mat. Palermo 28 (1909), 400401.CrossRefGoogle Scholar
[18]Scorza, G.. Sulle varietà di Segre. Opere scelte 376386. (Vol. 1).Google Scholar
[19]Serre, J.-P.. Faisceaux algébriques cohérents. Annals Math. 61 (1955), 197278.CrossRefGoogle Scholar
[20]Springer, T. A.. Invariant theory. Lecture Notes in Math. vol. 585 (Springer-Verlag, 1977).CrossRefGoogle Scholar