Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-07-04T07:22:55.832Z Has data issue: false hasContentIssue false

Radically filtered quasi-hereditary algebras and rigidity of tilting modules

Published online by Cambridge University Press:  01 March 2017

AMIT HAZI*
Affiliation:
DPMMS, Centre for Mathematical Sciences, Wilberforce Road, Cambridge, CB3 0WB. e-mail: A.Hazi@dpmms.cam.ac.uk

Abstract

Let A be a quasi-hereditary algebra. We prove that in many cases, a tilting module is rigid (i.e. has identical radical and socle series) if it does not have certain subquotients whose composition factors extend more than one layer in the radical series or the socle series. We apply this theorem to show that the restricted tilting modules for SL4(K) are rigid, where K is an algebraically closed field of characteristic p ≥ 5.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Alperin, J. L. Diagrams for modules. J. Pure Appl. Algebra (2) 16 (1980), 111119.Google Scholar
[2] Andersen, H. H. and Kaneda, M. Rigidity of tilting modules. Mosc. Math. J. (1) 11 (2011), 139, 181.Google Scholar
[3] Benson, D. J. Representations and cohomology I. Basic representation theory of finite groups and associative algebras. Second ed. Cambridge Stud. Adv. Math. Math. 30 (Cambridge University Press, 1998).Google Scholar
[4] Benson, D. J. and Carlson, J. F. Diagrammatic methods for modular representations and cohomology. Comm. Algebra (1-2) 15 (1987), 53121.Google Scholar
[5] Bowman, C., Doty, S. R., and Martin, S. Decomposition of tensor products of modular irreducible representations for SL 3 (with an appendix by C. M. Ringel). Int. Electron. J. Algebra 9 (2011), 177219.Google Scholar
[6] Bowman, C., Doty, S. R., and Martin, S. Decomposition of tensor products of modular irreducible representations for SL 3: the p ≥ 5 case. Int. Electron. J. Algebra 17 (2015), 105138.Google Scholar
[7] Bowman, C. and Martin, S. A reciprocity result for projective indecomposable modules of cellular algebras and BGG algebras. J. Lie Theory (4) 22 (2012), 10651073.Google Scholar
[8] Di Natale, C. Derived moduli of complexes and derived Grassmannians. Oct. 2014. arXiv: 1407.5900v2 [math.AG].Google Scholar
[9] Donkin, S. The q-Schur algebra. London Math. Soc. Lecture Note Ser. 253 (Cambridge University Press, 1998).Google Scholar
[10] Donkin, S. Tilting modules for algebraic groups and finite dimensional algebras. In Handbook of tilting theory. London Math. Soc. Lecture Note Ser. 332 (Cambridge University Press, 2007), pp. 215257.Google Scholar
[11] Doty, S. and Henke, A. Decomposition of tensor products of modular irreducibles for SL 2 . Q. J. Math. (2) 56 (2005), 189207.Google Scholar
[12] Hovey, M. Model categories. Math. Surveys Monogr. 63 (Amer. Math. Soc., 1999).Google Scholar
[13] Humphreys, J. E. Reflection groups and Coxeter groups. Vol. 29. Cambridge Studies in Advanced Mathematics (Cambridge University Press, Cambridge, 1990), pp. xii+204.Google Scholar
[14] Jantzen, J. C. Representations of algebraic groups. Second ed. Math. Surveys Monogr. 107 (Amer. Math. Soc., 2003).Google Scholar
[15] Low, Z. L. Model structures and derived functors. Junior Category Theory Seminar. University of Cambridge (Nov. 2013).Google Scholar
[16] Ringel, C. M. The category of modules with good filtrations over a quasi-hereditary algebra has almost split sequences. Math. Z. (2) 208 (1991), 209223.Google Scholar
[17] Schneiders, J.-P. Quasi-abelian categories and sheaves. Mém. Soc. Math. Fr. 76 (1999), III1VI140.Google Scholar
[18] Scott, L. L. Quasihereditary algebras and Kazhdan-Lusztig theory. English. In Finite Dimensional Algebras and Related Topics. Ed. by Dlab, V. and Scott, L. L. NATO ASI Series 424 (Springer Netherlands, 1994), pp. 293308.Google Scholar
[19] Soergel, W. Charakterformeln für Kipp-Moduln über Kac-Moody-Algebren. Represent. Theory 1 (1997), 115–132 (electronic).Google Scholar
[20] Soergel, W. Kazhdan–Lusztig-Polynome und eine Kombinatorik für Kipp–Moduln. Represent. Theory 1 (1997), 3768 (electronic).Google Scholar