Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-06-07T23:49:15.457Z Has data issue: false hasContentIssue false

Connectedness properties of the set where the iterates of an entire function are bounded

Published online by Cambridge University Press:  04 July 2013

JOHN OSBORNE*
Affiliation:
Department of Mathematics and Statistics, The Open University, Walton Hall, Milton Keynes, MK7 6AA. e-mail: john.osborne@open.ac.uk

Abstract

We investigate some connectedness properties of the set of points K(f) where the iterates of an entire function f are bounded. We describe a class of transcendental entire functions for which K(f) is totally disconnected if and only if each component of K(f) containing a critical point is aperiodic. Moreover we show that, for such functions, if K(f) is disconnected then it has uncountably many components. We give examples of functions for which K(f) is totally disconnected and we use quasiconformal surgery to construct a function for which K(f) has a component with empty interior that is not a singleton.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Aarts, J.M. and Oversteegen, L.G.The geometry of Julia sets. Trans. Amer. Math. Soc. 338 (2) (1993), 897918.CrossRefGoogle Scholar
[2]Baker, I.N.. Wandering domains in the iteration of entire functions. Proc. London Math. Soc. 49 (3) (1984), 563576.CrossRefGoogle Scholar
[3]Baker, I.N. and Domínguez, P.Some connectedness properties of Julia sets. Complex Variables Theory Appl. 41 (4) (2000), 371389.Google Scholar
[4]Baker, I.N. and Domínguez, P.Residual Julia sets. J. Analysis 8 (2000), 121137.Google Scholar
[5]Barański, K.. Trees and hairs for some hyperbolic entire maps of finite order. Math Z. 257 (2007), 3359.CrossRefGoogle Scholar
[6]Barański, K., Karpińska, B. and Zdunik, A. Hyperbolic dimension of Julia sets of meromorphic maps with logarithmic tracts. Int. Math. Res. Not. (2009), 615624.CrossRefGoogle Scholar
[7]Barański, K., Jarque, X. and Rempe, L.Brushing the hairs of transcendental entire functions. Topology Appl. 159 (2012), 21022114.CrossRefGoogle Scholar
[8]Beardon, A.F.. Iteration of rational functions. Graduate Texts in Mathematics 132. (Springer-Verlag, 1991).CrossRefGoogle Scholar
[9]Bergweiler, W.. Iteration of meromorphic functions. Bull. Amer. Math. Soc. 29 (1993), 151188.CrossRefGoogle Scholar
[10]Bergweiler, W.. On the set where the iterates of an entire function are bounded. Proc. Amer. Math. Soc. 140 (2012), 847853.CrossRefGoogle Scholar
[11]Bergweiler, W.An entire function with simply and multiply connected wandering domains. Pure Appl. Math. Quarterly. 7 (2011), 107120 [Special issue for F.W. Gehring].CrossRefGoogle Scholar
[12]Bergweiler, W., Rippon, P.J. and Stallard, G.M. Multiply connected wandering domains of entire functions. To appear in Proc. London Math. Soc. arXiv:1109.1794Google Scholar
[13]Bishop, C.J. A transcendental Julia set of dimension 1. Preprint. http://www.math.sunysb.edu/~bishop/papers/julia=1.pdfGoogle Scholar
[14]Carleson, L. and Gamelin, T.W.Complex Dynamics. (Springer-Verlag, 1993).CrossRefGoogle Scholar
[15]Domínguez, P.Connectedness properties of Julia sets of transcendental entire functions. Complex Variables 32 (1997), 199215.Google Scholar
[16]Douady, A. and Hubbard, J.H. On the dynamics of polynomial-like mappings. Ann. Sci. École Norm. Sup. 4th série t.18 (1985), 287343.CrossRefGoogle Scholar
[17]Eremenko, A.E. and Ljubich, M.J.Examples of entire functions with pathological dynamics. J. London Math. Soc. 36 (2) (1987), 458468.CrossRefGoogle Scholar
[18]Fatou, P.Sur l'itération des fonctions transcendantes entières. Acta Math. 47 (1926), 337360.CrossRefGoogle Scholar
[19]Hinkkanen, A.Entire functions with bounded Fatou components, in Transcendental Dynamics and Complex Analysis, Rippon, P.J. and Stallard, G.M. (eds.) (Cambridge University Press, 2008) 187216.CrossRefGoogle Scholar
[20]Hurewicz, W. and Wallman, H.Dimension Theory (Princeton University Press, New Jersey, 1948).Google Scholar
[21]Kisaka, M. Julia components of transcendental entire functions with multiply connected wandering domains. Preprint.Google Scholar
[22]Kisaka, M. and Shishikura, M.On multiply connected wandering domains of entire functions, in Transcendental Dynamics and Complex Analysis, Rippon, P.J. and Stallard, G.M. (eds.) (Cambridge University Press, 2008), 217250.CrossRefGoogle Scholar
[23]Kozlovski, O. and van Strien, S.Local connectivity and quasi-conformal rigidity of non-renormalizable polynomials. Proc. London Math. Soc. 99 (2) (2009), 275296.CrossRefGoogle Scholar
[24]Littlewood, J.E. and Offord, A.C.On the distribution of zeros and a-values of a random integral function (II). Ann. of Math. 49 (4) (1948), 885952.CrossRefGoogle Scholar
[25]Mayer, J.C.An explosion point for the set of endpoints of the Julia set of λ exp(z). Ergodic Theory Dynam. Systems 10 (1990), 177183.CrossRefGoogle Scholar
[26]McMullen, C.. Automorphisms of rational maps, in Holomorphic Functions and Moduli I, Drasin, D. et al. (eds.) (Springer-Verlag, 1988), 3160.CrossRefGoogle Scholar
[27]Milnor, J.Dynamics in One Complex Variable, 3rd edition (Princeton University Press, 2006).Google Scholar
[28]Osborne, J.W.The structure of spider's web fast escaping sets. Bull. London Math. Soc. 44 (3) (2012), 503519.CrossRefGoogle Scholar
[29]Qiu, W. and Yin, Y.Proof of the Branner–Hubbard conjecture on Cantor Julia sets. Science in China Series A : Mathematics. 52 (1) (Jan 2009), 4565.CrossRefGoogle Scholar
[30]Rempe, L.Connected escaping sets of exponential maps. Ann. Acad. Sci. Fenn. Math. 36 (2011), 7180.CrossRefGoogle Scholar
[31]Rickman, S.Quasiregular mappings. Ergeb. Math. Grenzgeb. 26 (Springer, 1993).Google Scholar
[32]Rippon, P.J. and Stallard, G.M.Slow escaping points of meromorphic functions. Trans. Amer. Math. Soc. 363 (8) (2011), 41714201.CrossRefGoogle Scholar
[33]Rippon, P.J. and Stallard, G.M.Fast escaping points of entire functions. Proc. London Math. Soc. 105 (4) (2012), 787820.CrossRefGoogle Scholar
[34]Rippon, P.J. and Stallard, G.M.Boundaries of escaping Fatou components. Proc. Amer. Math. Soc. 139 (8) (2011), 28072820.CrossRefGoogle Scholar
[35]Rippon, P.J. and Stallard, G.M.A sharp growth condition for a fast escaping spider's web. Adv. Math. 244 (2013), 337353.CrossRefGoogle Scholar
[36]Roesch, P. and Yin, Y.The boundary of bounded polynomial Fatou components. C.R. Acad. Sci. Paris, Ser. I. 346 (2008), 877880.CrossRefGoogle Scholar
[37]Roesch, P. and Yin, Y. Bounded critical Fatou components are Jordan domains, for polynomials. Preprint. arXiv:0909.4598v2.Google Scholar
[38]Sullivan, D.Quasiconformal homeomorphisms and dynamics I: solution of the Fatou–Julia problem on wandering domains. Ann. of Math. 122 (1985), 401418.CrossRefGoogle Scholar
[39]Titchmarsh, E.C.The Theory of Functions, 2nd edition. (Oxford University Press, 1939).Google Scholar
[40]Zheng, J.H.Unbounded domains of normality of entire functions of small growth. Math. Proc. Camb. Phil. Soc. 128 (2000), 355361.Google Scholar
[41]Zheng, J.H.Singularities and wandering domains in iteration of meromorphic functions. Illinois J. Math. 44 (3) (2000), 520530.CrossRefGoogle Scholar
[42]Zheng, J.H.On multiply-connected Fatou components in iteration of meromorphic functions. J. Math. Anal. Appl. 313 (2006), 2437.CrossRefGoogle Scholar