Hostname: page-component-5c6d5d7d68-tdptf Total loading time: 0 Render date: 2024-08-15T05:53:42.178Z Has data issue: false hasContentIssue false

On a generalisation of Roth's theorem for arithmetic progressions and applications to sum-free subsets

Published online by Cambridge University Press:  12 June 2013

JEHANNE DOUSSE*
Affiliation:
LIAFA, Université Paris Diderot - Paris 7, Case 7014, 75205 Paris Cedex 13, France. e-mail: jehanne.dousse@liafa.univ-paris-diderot.fr

Abstract

We prove a generalisation of Roth's theorem for arithmetic progressions to d-configurations, which are sets of the form {ni+nj+a}1 ≤ ijd with a, n1,. . .,nd$\mathbb{N}$, using Roth's original density increment strategy and Gowers uniformity norms. Then we use this generalisation to improve a result of Sudakov, Szemerédi and Vu about sum-free subsets [10] and prove that any set of n integers contains a sum-free subset of size at least logn(log(3)n)1/32772 − o(1).

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Bourgain, J.On triples in arithmetic progression. Geom. Funct. Anal. 9 (1999), pp. 968984.CrossRefGoogle Scholar
[2]Choi, S. L. G.On a combinatorial problem in number theory. Proc. London Math. Soc. 3 (1971), pp. 629642.CrossRefGoogle Scholar
[3]Erdős, P.Extremal problems in number theory. In Proc. Sympos. Pure Math. vol. 8 (American Mathematical Society), 1965, pp. 181189.Google Scholar
[4]Gowers, W. T.A new proof of Szemerédi's theorem. Geom. Funct. Anal. 11 (2001), pp. 465588.CrossRefGoogle Scholar
[5]Green, B. and Tao, T.Linear equations in primes. Ann. of Math. 171 (2010), pp. 17531850.CrossRefGoogle Scholar
[6]Green, B. J. Roth's theorem on progressions of length 3. Course notes.Google Scholar
[7]Heath–Brown, D. R.Integer sets containing no arithmetic progressions. J. London Math. Soc. 35 (1987), pp. 385394.CrossRefGoogle Scholar
[8]Roth, K.On certain sets of integers. J. London Math. Soc. 28 (1953), pp. 104109.CrossRefGoogle Scholar
[9]Ruzsa, I. Z.Sum-avoiding subsets. The Ramanujan Journal 9 (2005), pp. 7782.CrossRefGoogle Scholar
[10]Sudakov, B., Szemerédi, E. and Vu, V.On a question of Erdös and Moser. Duke Math. J. 129 (2005), pp. 129155.CrossRefGoogle Scholar
[11]Szemerédi, E.On sets of integers containing no $k$ elements in arithmetic progression. Acta Arith. 27 (1975), pp. 199245.CrossRefGoogle Scholar
[12]Szemerédi, E.Integer sets containing no arithmetic progressions. Acta Math. Hungar. 56 (1990), pp. 155158.CrossRefGoogle Scholar
[13]Tao, T. and Vu, V. H.Additive Combinatorics (Cambridge University Press, 2010).Google Scholar