Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-05-23T07:23:04.768Z Has data issue: false hasContentIssue false

Projections of the minimal nilpotent orbit in a simple Lie algebra and secant varieties

Published online by Cambridge University Press:  13 July 2023

DMITRI PANYUSHEV*
Affiliation:
Institute for Information Transmission Problems, Bolshoy Karetnyi per. 19, Moscow 127051, Russia. e-mail: panyushev@iitp.ru

Abstract

Let G be a simple algebraic group with ${\mathfrak g}={\textrm{Lie }} G$ and ${\mathcal O}_{\textsf{min}}\subset{\mathfrak g}$ the minimal nilpotent orbit. For a ${\mathbb Z}_2$-grading ${\mathfrak g}={\mathfrak g}_0\oplus{\mathfrak g}_1$, let $G_0$ be a connected subgroup of G with ${\textrm{Lie }} G_0={\mathfrak g}_0$. We study the $G_0$-equivariant projections $\varphi\,:\,\overline{{\mathcal O}_{\textsf{min}}}\to {\mathfrak g}_0$ and $\psi:\overline{{\mathcal O}_{\textsf{min}}}\to{\mathfrak g}_1$. It is shown that the properties of $\overline{\varphi({\mathcal O}_{\textsf{min}})}$ and $\overline{\psi({\mathcal O}_{\textsf{min}})}$ essentially depend on whether the intersection ${\mathcal O}_{\textsf{min}}\cap{\mathfrak g}_1$ is empty or not. If ${\mathcal O}_{\textsf{min}}\cap{\mathfrak g}_1\ne\varnothing$, then both $\overline{\varphi({\mathcal O}_{\textsf{min}})}$ and $\overline{\psi({\mathcal O}_{\textsf{min}})}$ contain a 1-parameter family of closed $G_0$-orbits, while if ${\mathcal O}_{\textsf{min}}\cap{\mathfrak g}_1=\varnothing$, then both are $G_0$-prehomogeneous. We prove that $\overline{G{\cdot}\varphi({\mathcal O}_{\textsf{min}})}=\overline{G{\cdot}\psi({\mathcal O}_{\textsf{min}})}$. Moreover, if ${\mathcal O}_{\textsf{min}}\cap{\mathfrak g}_1\ne\varnothing$, then this common variety is the affine cone over the secant variety of ${\mathbb P}({\mathcal O}_{\textsf{min}})\subset{\mathbb P}({\mathfrak g})$. As a digression, we obtain some invariant-theoretic results on the affine cone over the secant variety of the minimal orbit in an arbitrary simple G-module. In conclusion, we discuss more general projections that are related to either arbitrary reductive subalgebras of ${\mathfrak g}$ in place of ${\mathfrak g}_0$ or spherical nilpotent G-orbits in place of ${\mathcal O}_{\textsf{min}}$.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of Cambridge Philosophical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This research was funded by RFBR, project no. 20-01-00515.

References

Antonyan, L.V.. On classification of homogeneous elements of ${{\mathbb Z}}_2$ -graded semisimple Lie algebras. Moscow Univ. Math. Bulletin 37(2) (1982), 3643.Google Scholar
Brylinski, R.K. and Kostant, B.. Lagrangian models of minimal representations of $E_6$ , $E_7$ and $E_8$ . Functional Analysis on the Eve of the 21st Century. vol. 1. 1363, Progr. Math. 131 (Birkhäuser, Boston, 1995).Google Scholar
Bulois, M.. Sheets of symmetric Lie algebras and Slodowy slices. J. Lie Theory 21 (2011), 154.Google Scholar
Chaput, P.-E.. Severi varieties. Math. Z. 240 (2002), 451459.CrossRefGoogle Scholar
Collingwood, D.H. and McGovern, W.. Nilpotent Orbits in Semisimple Lie Algebras (Van Nostrand Reinhold, New York, 1993).Google Scholar
De Concini, C. and Procesi, C.. Complete symmetric varieties. In Invariant Theory (Montecatini, 1982), Lecture Notes in Math., vol. 996, (Springer, Berlin, 1983), pp. 1–44.Google Scholar
Elashvili, A.G.. Canonical form and stationary subalgebras of points of general position for simple linear Lie groups. Funct. Anal. Appl. 6 (1972), 4453.CrossRefGoogle Scholar
Hesselink, W.. The normality of closures of orbits in a Lie algebra. Comment. Math. Helv. 54(1) (1979), 105110.CrossRefGoogle Scholar
Kaji, H.. Homogeneous projective varieties with degenerate secants. Trans. Amer. Math. Soc. 351 (1999), 533545.CrossRefGoogle Scholar
Kaji, H., Ohno, M. and Yasukura, O.. Adjoint varieties and their secant varieties. Indag. Math. (N.S.) 10(1) (1999), 4557.CrossRefGoogle Scholar
Kaji, H. and Yasukura, O.. Secant varieties of adjoint varieties: orbit decomposition. J. Algebra 227(1) (2000), 2644.CrossRefGoogle Scholar
Kostant, B. and Rallis, S.. Orbits and representations associated with symmetric spaces. Amer. J. Math. 93 (1971), 753809.CrossRefGoogle Scholar
Lakshmibai, V. and Raghavan, K.. “Standard Monomial Theory. Invariant Theoretic Approach. Encyclopaedia Math. Sci., 137 (Springer-Verlag, Berlin, 2008), pp. xiv+265.Google Scholar
Landsberg, J.M.. Tensors: Geometry and Applications. Graduate Studies in Math., 128. (AMS, Providence, RI, 2012).Google Scholar
Lawther, R.. Jordan block sizes of unipotent elements in exceptional algebraic groups. Comm. Algebra., 23 (1995), 41254156.CrossRefGoogle Scholar
Lichtenstein, W.. A system of quadrics describing the orbit of the highest weight vector. Proc. Amer. Math. Soc. 84(4) (1982), 605608.CrossRefGoogle Scholar
Panyushev, D.. On spherical nilpotent orbits and beyond. Ann. Inst. Fourier 49 (1999), 14531476.CrossRefGoogle Scholar
Panyushev, D. and Vinberg, E.B.. An infinitesimal characterisation of the complexity of homogeneous spaces. Transform. Groups 4(1) (1999), 97101.CrossRefGoogle Scholar
Richardson, R.W.. Conjugacy classes in Lie algebras and algebraic groups. Ann. of Math. 86(1) (1967), 115.CrossRefGoogle Scholar
Springer, T.A.. The classification of involutions of simple algebraic groups. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 34 (1987), 655670.Google Scholar
Vinberg, E.B.. The Weyl group of a graded Lie algebra. Math. USSR-Izv. 10 (1976), 463495.CrossRefGoogle Scholar
Gorbatsevich, V.V., Onishchik, A.L. and Vinberg, E.B.. Lie Groups and Lie Algebras III Encyclopaedia Math. Sci., vol. 41 (Springer, Berlin, 1994).Google Scholar
Vinberg, E.B. and Popov, V.L.. On a class of quasihomogeneous affine varieties. Math. USSR-Izv. 6 (1972), 743758.CrossRefGoogle Scholar
Popov, V.L. and Vinberg, E.B.. Invariant theory In: Algebraic Geometry IV Encyclopaedia Math. Sci., vol. 55 (Springer, Berlin-Heidelberg-New York, 1994), pp.123–284.Google Scholar