Hostname: page-component-77c89778f8-9q27g Total loading time: 0 Render date: 2024-07-21T01:28:37.439Z Has data issue: false hasContentIssue false

On Second-Order Characteristics of Germ-Grain Models with Convex Grains

Published online by Cambridge University Press:  21 December 2009

Felix Ballani
Affiliation:
AG Mathematical Geometry Processing, Freie Universität Berlin, Arnimallee 3, D-14195 Berlin, Germany. E-mail: ballani@mi.fu-berlin.de
Get access

Abstract

For a stationary random closed set Ξ in ℝd it is well known that the first-order characteristics volume fraction VV, surface intensity SV and spherical contact distribution function Hs(t) are related by

(1 – VV) Hs′(0) = SV.

Type
Research Article
Copyright
Copyright © University College London 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Ballani, F., Beiträge zur Theorie und Anwendung von Keim-Korn-Modellen mit konvexen Körnern. PhD thesis, Technische Universität Bergakademie Freiberg (2006).Google Scholar
2Ballani, F., The surface pair correlation function for stationary Boolean models. Adv. Appl. Prob. 39 (2007), 115.CrossRefGoogle Scholar
3Federer, H., Geometric Measure Theory. Springer (Berlin, 1969).Google Scholar
4Georgii, H.-O., On canonical Gibbs states, symmetric and tail events. Z. Wahrscheinlichkeitstheorie verw. Geb. 33 (1976), 331341.CrossRefGoogle Scholar
5Hansen, M. B., Baddeley, A. J. and Gill, R. D., First contact distributions for spatial patterns: regularity and estimation. Adv. Appl. Prob. 31 (1999), 1533.CrossRefGoogle Scholar
6Heinrich, L. and Molchanov, I. S., Central limit theorem for a class of random measures associated with germ-grain models. Adv. Appl. Prob. 31 (1999), 283314.CrossRefGoogle Scholar
7Hug, D. and Last, G., On support measures in Minkowski spaces and contact distributions in stochastic geometry. Ann. Prob. 28 (2000), 796850.CrossRefGoogle Scholar
8Kallenberg, O.Random Measures. Akademie-Verlag (Berlin, 1983) and Academic Press (London, 1983).Google Scholar
9Last, G. and Schassberger, R., On the distribution of the spherical contact vector of stationary germ-grain models. Adv. Appl. Prob. 30 (1998), 3652.CrossRefGoogle Scholar
10Last, G. and Schassberger, R., On the second derivative of the spherical contact distribution function of smooth grain models. Prob. Theory Relat. Fields 121 (2001), 4972.CrossRefGoogle Scholar
11Mecke, J., Stationäre zufällige Maße auf lokalkompakten Abelschen Gruppen. Z. Wahrscheinlichkeitstheorie verw. Geb. 9 (1967), 3658.CrossRefGoogle Scholar
12Mecke, K. R., Exact moments of curvature measures in the Boolean model. J. Statist. Phys. 102 (2001), 13431381.CrossRefGoogle Scholar
13Nguyen, X. X. and Zessin, H., Integral and differential characterizations of the Gibbs process. Math. Nachr. 88 (1979), 105115.Google Scholar
14Rao, M. M., Conditional Measures and Applications. Marcel Dekker Inc. (New York, 1993).Google Scholar
15Schneider, R., Convex Bodies: the Brunn-Minkowski Theory. Cambridge University Press (Cambridge, 1993).CrossRefGoogle Scholar
16Stoyan, D., Kendall, W. S. and Mecke, J., Stochastic Geometry and its Applications. John Wiley & Sons (Chichester, 1995).Google Scholar
17Torquato, S., Random Heterogeneous Materials: Microstructure and Macroscopic Properties. Springer-Verlag (New York, Berlin, Heidelberg, 2002).Google Scholar