Hostname: page-component-7479d7b7d-jwnkl Total loading time: 0 Render date: 2024-07-11T09:28:02.307Z Has data issue: false hasContentIssue false

Étude par la méthode d’homogénéisation des effets combinés de la rugosité de surface et de la rhéologie du lubrifiant sur le comportement d’un contact hydrodynamique

Published online by Cambridge University Press:  24 December 2010

Ahcene Mouassa
Affiliation:
Laboratoire de Mécanique et Structures (LMS), Université de Guelma, BP 401, Ouelma 2400, Algérie
Mustapha Lahmar
Affiliation:
Laboratoire de Mécanique et Structures (LMS), Université de Guelma, BP 401, Ouelma 2400, Algérie
Benyebka Bou-Said*
Affiliation:
Université de Lyon, CNRS INSA-Lyon, LaMCoS, UMR 5259, 69621 Villeurbanne, France
*
a Auteur pour correspondance : benyebka.bou-said@insa-lyon.fr
Get access

Abstract

Dans cet article, les effets combinés de la rugosité de surface et de la rhéologie du lubrifiant additivé sur les performances hydrodynamiques d’un patin plan incliné sont étudiés au moyen de la méthode d’homogénéisation. La surface du patin contiguë au film est supposée fixe et rugueuse tandis que la surface inférieure mobile est parfaitement lisse. Le modèle de fluide polaire ou à couple de contrainte de V.K. Stokes est adopté pour décrire le comportement rhéologique du lubrifiant s’écoulant entre les deux surfaces. Les études de simulation sont effectuées en considérant trois formes de rugosités (transversales, longitudinales et anisotropes) et différentes valeurs du paramètre de couple de contrainte. La comparaison des solutions obtenues par les méthodes déterministe et d’homogénéisation a permis de conclure que la méthode d’homogénéisation est efficace pour les trois formes de rugosité envisagées. Les résultats de l’étude paramétrique effectuée montrent que les rugosités de surface et les couples de contraintes dus à la présence des additifs polymériques dans le lubrifiant ont des effets non négligeables sur les performances hydrodynamiques du contact, à savoir : le champ de pression, la capacité de charge, le nombre de frottement et la puissance dissipée.

Type
Research Article
Copyright
© AFM, EDP Sciences 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Références

Reynolds, O., On the theory of lubrication and its application to M. Beauchamp Tower’s experiments, Phil. Trans. Roy. Soc. London A 177 (1886) 157234 CrossRefGoogle Scholar
S.T. Tzeng, E. Saibel, Surface roughness effect on slider lubrication, ASLE Trans. 10 (1967) 334
H. Christensen, Stochastics models for hydrodynamic lubrication of rough surfaces, Proc. IMechE 184 (Part 1) 1969–1970
Prakash, J., Tiwari, K., Lubrication of a porous bearing with surface corrugations, ASME J. Lub. Tech. 104 (1982) 12734 CrossRefGoogle Scholar
Christensen, H., Tonder, K., The hydrodynamic lubrication of rough bearing surfaces of finite width, Trans. ASME J. Lub. Techn. 93 (1971) 324330 CrossRefGoogle Scholar
Elrod, H.G., Thin-film lubrication theory for Newtonian fluids possessing striated roughness or grooving, ASME J. Lub. Tech. 95 (1973) 484489 CrossRefGoogle Scholar
N. Patir, H.S. Cheng, Effect of surface roughness orientation on central film thickness in EHD contact, Proc. 5th Leeds-Lyon Symp. Trib., 1978, pp. 15–21
Boedo, S., Booker, J.F., Surface roughness and structural inertia in a mode-based mass conserving elastohydrodynamic lubrication model, Trans. ASME J. Trib. 119 (1997) 449455 CrossRefGoogle Scholar
Wang, P., Keith, T.G., Combined surface roughness of dynamically loaded journal bearings, Trib. Trans. 45 (2002) 110 CrossRefGoogle Scholar
Elrod, J.R., A cavitation algorithm, Trans. ASME J. Lub. Tech. 103 (1981) 350354 CrossRefGoogle Scholar
Vijayaraghavan, D., Keith, J.R., Development and evaluation of a cavitation algorithm, Trib. Trans. 32 (1989) 225233 CrossRefGoogle Scholar
Naduvinamani, N.B., Siddangouda, A., Effect of surface roughness on the hydrodynamic lubrication of porous step-slider bearings with couple stress fluids, Trib. Int. 40 (2007) 780793 CrossRefGoogle Scholar
Kweh, C.C., Patching, M.J., Evans, H.P., Snidle, R.W., Simulation of elastohydrodynamic contacts between rough surfaces, Trans. ASME J. Trib. 114 (1992) 412419 CrossRefGoogle Scholar
Greenwood, J.A., Morales, G.E. Espejel, The behavior of transverse roughness in elastohydrodynamic lubrication contact, Proc. of the IMechE J. Trib. Eng. Part J 208 (1994) 121132. CrossRefGoogle Scholar
Zhu, D., Ai, X., Point contact elastohydrodynamic lubrication based on optically measured three-dimensional rough surfaces, Trans. ASME J. Trib. 119 (1997) 375384 CrossRefGoogle Scholar
Dobrica, M.B., Fillon, M., Maspeyrot, P., Mixed elastohydrodynamic lubrication in partial journal bearings – comparison between deterministic and stochastic models, ASME J. Trib. 128 (2006) 778788 CrossRefGoogle Scholar
Dobrica, M.B., Fillon, M., Maspeyrot, P., Influence of mixed lubrication and rough elastic-plastic contact on the performance of small fluid film bearings, STLE Trib. Trans. 51 (2008) 699717 CrossRefGoogle Scholar
V.A. Marchenko, E.Ya. Khruslov, Homogenization of partial differential equations, Birkhäuser, Boston, 2006
Hiroshi, O., Yasuyoshi, F., Noriyoshi, K., Homogenization method for heterogeneous material based on boundary element method, Comput. Struct. 79 (2001) 19872007 Google Scholar
Marcin, K., Sensitivity and randomness in homogenization of periodic fiber-reinforced composites via the response function method, Int. J. Solids Struct. 46 (2009) 923937 Google Scholar
Bayada, G., Faure, J.B., A double scale analysis approach of the Reynolds roughness comments and application to the journal bearing, J. Trib. 111 (1989) 323330 CrossRefGoogle Scholar
Jai, M., Homogenization and two-scale convergence of the compressible Reynolds lubrication equation modelling the flying characteristics of a rough magnetic head over a rough rigid-disk surface, ASME J. Trib. 124 (2002) 327335 CrossRefGoogle Scholar
G. Bayada, S. Ciuperca, M. Jai, Homogenization of variational equations and inequalities with small oscillating parameters: Application to the study of thin film unstationary lubrication flow, C. R. Acad. Sci. Paris, t. 328, Série II b (2000) 819–824
Jai, M., Bou-Said, B., A comparison of homogenization and averaging techniques for the treatment of roughness in slip-flow-modified Reynolds equation, Trans. ASME J. Trib. 124 (2002) 327335 CrossRefGoogle Scholar
Buscaglia, G.C., Jai, M., Homogenization of the generalized Reynolds equation for ultra-thin gas films and its resolution by FEM, J. Trib. 126 (2004) 547552 CrossRefGoogle Scholar
Kane, M., Bou-Said, B., Comparison of homogenization and direct techniques for the treatment of roughness in incompressible lubrication, J. Trib. 126 (2004) 733737 CrossRefGoogle Scholar
Kane, M., Bou-Said, B., A study of roughness and non-newtonian effects in lubricated contacts, ASME J. Trib. 127 (2005) 575581 CrossRefGoogle Scholar
Almqvist, A., Lukkassen, D., Meidell, A., Wall, P., New concepts of homogenization applied in rough surface hydrodynamic lubrication, Int. J. Eng. Sci. 45 (2007) 139154 CrossRefGoogle Scholar
Almqvist, A., Essel, E.K., Persson, L.E., Wall, P., Homogenization of the unstationary incompressible Reynolds equation, Trib. Int. 40 (2007) 13441350 CrossRefGoogle Scholar
Stokes, V.K., Couple stresses in fluids, Phys. Fluids 9 (1966) 17091715 CrossRefGoogle Scholar
Lahmar, M., Bou-Saïd, B., Couple-stresses effects on the dynamic behavior of connecting-rod bearings in both gosoline and diesel engines, J. Trib. Trans. STLE 51 (2008) 4456 CrossRefGoogle Scholar
Kabouya, A., Lahmar, M., Bou-Saïd, B., Étude des paliers lisses mésalignés lubrifiés par des fluides à couple de contrainte, Mécanique & Industries 8 (2007) 577595 CrossRefGoogle Scholar
Boucherit, H., Lahmar, M., Bou-Saïd, B., Misalignment effect on steady-state and dynamic behaviour of compliant journal bearings lubricated with couple stress fluids, J. Lubr. Sci. 20 (2008) 241268 CrossRefGoogle Scholar
Gupta, R.S., Sharma, L.G., Analysis of couple stress lubricant in hydrostatic thrust bearings, Wear 48 (1988) 257269 CrossRefGoogle Scholar
Lin, J.R., Static and dynamic characteristics of externally pressurized circular step thrust bearings lubricated with couple stress fluids, Trib. Int. 32 (1999) 207216 CrossRefGoogle Scholar
Sinha, P., Singh, C., Couple stresses in the lubrication of rolling contact bearings considering cavitation, Wear 67 (1981) 8591 CrossRefGoogle Scholar
Bujurke, N.M., Naduvinami, N.G., The lubrication of the lightly cylinders in combined rolling, sliding and normal motion with couple stress fluid, Int. Mech. Sci. 32 (1990) 969979 CrossRefGoogle Scholar
Lin, J.R., Squeeze film characteristics of long partial journal bearings lubricated with couple stress fluids, Trib. Int. 30 (1997) 5358 CrossRefGoogle Scholar
Lin, J.R., Squeeze film characteristics of finite journal bearings: couple stress fluid model, Trib. Int. 4 (1998) 201207 CrossRefGoogle Scholar
Lin, J.R., Yang, C.B., Lu, R.F., Effects of couple stresses in the cyclic squeeze films of finite partial journal bearings, Trib. Int. 34 (2001) 119125 CrossRefGoogle Scholar
Naduvinamani, N.B., Hiremath, P.S., Gurubasavaraj, G., Squeeze film lubrication of a short porous journal bearing with couple stress fluids, Trib. Int. 34 (2001) 739747 CrossRefGoogle Scholar
Mokhiamar, U.M., Crosby, W.A., El-Gamal, H.A., A study of a journal bearing lubricated by fluids with couple stress considering the elasticity of the liner, Wear 224 (1999) 194201CrossRefGoogle Scholar