Hostname: page-component-7479d7b7d-767nl Total loading time: 0 Render date: 2024-07-11T19:29:25.988Z Has data issue: false hasContentIssue false

ORIBATIDA OF CANADIAN PEATLANDS

Published online by Cambridge University Press:  31 May 2012

V.M. Behan-Pelletier
Affiliation:
Biological Resources Division (CLBRR), Agriculture Canada Research Branch, K.W. Neatby Building, Ottawa, Ontario, Canada K1A 0C6
B. Bissett
Affiliation:
Biological Resources Division (CLBRR), Agriculture Canada Research Branch, K.W. Neatby Building, Ottawa, Ontario, Canada K1A 0C6
Get access

Abstract

This paper reviews and summarizes preliminary data on the taxonomy, distribution, and ecology of oribatid mites of Canadian peatlands, primarily those of eastern Canada. This fauna is a heterogenous assemblage comprising 71 species in 49 genera and 34 families, found in four main types of habitats: aquatic, mesic, xeric, and epigeal. About half of the oribatid fauna of peatlands, and most aquatic species, are restricted in distribution to the Nearctic. Oribatid taxa known or suspected to be parthenogenetic are much better represented in peatlands than in the general Canadian fauna. Data on the feeding habits of odonate larvae in Newfoundland bog pools, based on gut content analysis, show that oribatid mites, in particular species of Limnozetes Hull and Hydrozetes Berlese, are common prey of species of Aeshna Fabricius, Leucorrhina Brittinger, and Libellula L. A synopsis of available data suggests that assemblages of Limnozetes species may be useful in characterizing peatlands.

Résumé

On trouvera ici une révision et un résumé de données préliminaires sur la taxonomie, la répartition et l’écologie des acariens oribates des habitats tourbeaux du Canada, particulièrement ceux de l’est du Canada. Il s’agit d’une faune hétérogène regroupant 71 espèces appartenant à 49 genres et 34 familles, trouvées dans quatre principaux types d’habitats : aquatique, mésique, xérique et épigée. Environ la moitié dans oribates des zones tourbeuses et la plupart des espèces aquatiques sont strictement néarctiques. Les oribates présumés parthénogénétiques et ceux reconnus comme tels sont beaucoup mieux représentés dans les habitats tourbeux que dans l’ensemble de la faune canadienne. Des données relatives aux habitudes alimentaires des larves d’odonates dans les étangs de tourbière de Terre-Neuve, données basées sur l’analyse de contenus stomacaux, indiquent que les acariens oribates, en particulier les espèces de Limnozetes Hull et d’Hydrozetes Berlese, sont des proies communes d’Aeshna Fabricius, de Leucorrhina Brittinger et de Libellula L. La synthèse des donnëes disponibles permet de croire que les associations d’espèces de Limnozetes pourraient s’avérer très utiles pour caractériser les milieux tourbeux. [Traduit par la Rédaction]

Type
Research Article
Copyright
Copyright © Entomological Society of Canada 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alberti, G. 1973. Eranhrungsbiologie und Spinnvermogen der Schnablemilben (Bdellidae, Trombidiformes). Zeitschrift für Morphologie und Ökologie der Tiere 76: 285338.Google Scholar
Banks, N. 1895. Some acarians from a Sphagnum swamp. Journal of the New York Entomologist Society 3: 128130.Google Scholar
Behan-Pelletier, V.M. 1989. Limnozetes (Acari: Oribatida: Limnozetidae) of northeastern North America. The Canadian Entomologist 121: 453506.Google Scholar
Behan-Pelletier, V.M. 1993. Diversity of soil arthropods in Canada: Systematic and ecological problems, pp. 11–50 in Ball, G.E., and Danks, H.V. (Eds.), Systematics and Entomology: Diversity, Distribution, Adaptation, and Application. Memoirs of the Entomological Society of Canada 165: 272 pp.Google Scholar
Beier, M. 1928. Die milben in den bioconosen der Lunzer Hochmoore. Zeitschrift für Morphologie und Ökologie der Tiere 11: 161181.Google Scholar
Belanger, S.D. 1976. The Microarthropod Community of Sphagnum Moss with Emphasis on the Oribatei. Unpubl. M.Sc. thesis, State University of New York, Syracuse, NY. 80 pp.Google Scholar
Bocard, D. 1988. Les acariens oribates des sphaignes de quelques tourbières du Haut-Jura Suisse. Vol. Ecologie 261 + XV pp., Vol. Systematique 170 pp. Unpubl. Ph.D. thesis, Université de Neuchâtel, Switzerland.Google Scholar
Bocard, D. 1991 a. Les Oribates des tourbières du Jura suisse (Acari, Oribatei). Faunistique I. Introduction, Bifemorata, Ptyctima, Arthronota. Bulletin de la Société Entomologique Suisse 64: 173188.Google Scholar
Bocard, D. 1991 b. Les Oribates des tourbières du Jura suisse (Acari, Oribatei). Faunistique II. Holonota. Bulletin de la Société Entomologique Suisse 64: 251263.Google Scholar
Bocard, D. 1991 c. Les Oribates des tourbières du Jura suisse (Acari, Oribatei): Ecologie. I. Quelques aspects de la communauté d'Oribates des sphaignes de la tourbière du Cachot. Revue suisse Zoologie 98: 303317.Google Scholar
Bocard, D. 1991 d. Les Oribates des tourbières du Jura suisse (Acari, Oribatei): Ecologie. III. Comparaison a posteriori de nouvelles récoltes avec un ensemble de données de référence. Revue suisse Zoologie 98: 521533.Google Scholar
Bocard, D. 1991 e. Les Oribates des tourbières du Jura suisse (Acari, Oribatei): Écologie. II. Les relations Oribates–environnement à la lumière du test de Mantel. Revue d'Ecologie et de Biologie du Sol 28: 323339.Google Scholar
Bocard, D. 1992. Les Oribates des tourbières du Jura suisse (Acari, Oribatei). Faunistique IV. Carabodoidea, Tectocepheoidea, Oppioidea (Oppiidae). Bulletin de la Société Entomologique Suisse 65: 241250.Google Scholar
Dalenius, P. 1960. Studies on the Oribatei (Acari) of the Tornetrask Territory in Swedish Lapland. I. A list of the habitats, and the composition of their oribatid fauna. Oikos 11: 80124.Google Scholar
Dalenius, P. 1962. Studies on the Oribatei (Acari) of the Tornetrask territory in Swedish Lapland. III. The vertical distribution of the moss mites. Kungl. Fysiografiska Sällskapets i Lund Förhandlingar 32: 105129.Google Scholar
Druk, A. Ya. 1982. Beetle mites of certain types of bogs in the Moscow Region, pp. 7277in Soil Invertebrates of the Moscow Region. Nauka Publishers, Moscow. [In Russian.]Google Scholar
Eitminavichyute, I., Strazdene, V., and Kadite, B.. 1972. Pedobiological characteristics of typical bogs in the Lithuanian SSR. Mintis Publ., Vilnius. 247 pp. [In Russian.]Google Scholar
Erickson, J.M. 1988. Fossil oribatid mites as tools for quaternary paleoecologists: Preservation quality, quantities, and taphonomy. pp. 207226in Laub, R.S., Miller, N.G., and Steadman, D.W. (Eds.), Late Pleistocene and Early Holocene Paleoecology and Archeology of the Eastern Great Lakes Region. Bulletin of the Buffalo Society of Natural Sciences 33.Google Scholar
Fairchild, W.L., O'Neill, M.C.A., and Rosenberg, D.M.. 1987. Quantitative evaluation of the behavioural extraction of aquatic invertebrates from samples of sphagnum moss. Journal of the North American Benthological Society 6: 281287.Google Scholar
Finnamore, A.T. 1988. Ecological collecting and long term monitoring with respect to the Wagner peatland. Newsletter of the Biological Survey of Canada 7: 1014.Google Scholar
Jacot, A.P. 1930. Oribatid mites of the subfamily Phthiracarinae of the northeastern United States. Proceedings of the Boston Society of Natural History 39: 209261.Google Scholar
Karppinen, E., Krivolutsky, D.A., Koponen, M., Kozlovskaja, L.S., Laskova, L.M., and Viitasaari, M.. 1979. List of subfossil oribatid mites (Acarina, Oribatei) of northern Europe and Greenland. Annales entomologici fennici 45: 103108.Google Scholar
Krivolutsky, D.A., Druk, A. Ya., Eitminaviciute, I.S., Laskova, L.M., and Karppinen, E.. 1990. Fossil beetle mites. Mokslas Publ., Vilnius, pp. 5109.Google Scholar
Larson, D.J., and House, N.L.. 1990. Insect communities of Newfoundland bog pools with emphasis on the Odonata. The Canadian Entomologist 122: 469501.Google Scholar
Laskova, L.M. 1980. Oribatid mites (Oribatei) in the Zorinskie bogs in Kursk Oblast. Zoologicheskiy Zhurnal 59: 18901892. [In Russian.]Google Scholar
Lebrun, Ph., Van Impe, G., de Saint Georges-Gridelet, D., Wauthy, G., and Andre, H.M.. 1991. The life strategies of mites, pp. 322in Murphy, P.W., and Schuster, R. (Eds.), The Acari: Reproduction, Development and Life-history Strategies. Chapman and Hall Ltd., London.Google Scholar
Luxton, M. 1972. Studies on the oribatid mites of a Danish beech wood soil. I. Nutritional biology. Pedobiologia 12: 434463.Google Scholar
Luxton, M. 1991. Seasonal and spatial variation in food intake by the oribatid mites of beech woodland soil. pp. 459472in Murphy, P.W., and Schuster, R. (Eds.), The Acari: Reproduction, Development and Life-history Strategies. Chapman and Hall Ltd., London.Google Scholar
Markkula, I. 1986 a. Comparison of the communities of oribatids (Acari: Cryptostigmata) of virgin and forest-ameliorated pine bogs. Annales zoologici fennici 23: 3338.Google Scholar
Markkula, I. 1986 b. Comparison of present and subfossil oribatid faunas in the surface peat of a drained pine mire. Annales entomologici fennici 52: 3941.Google Scholar
Marshall, V.G., Reeves, R.M., and Norton, R.A.. 1987. Catalogue of the Oribatida (Acari) of Continental United States and Canada. Memoirs of the Entomological Society of Canada 139: 418 pp.Google Scholar
Matveenko, A.A., and Grishina, L.G.. 1987. Humidity preference of the beetle mite Nothrus palustris (C.L. Koch). Ecology and Geography of the Arthropoda of Siberia. Academia Nauka. pp. 79, 80. [In Russian.]Google Scholar
Norton, R.A., and Behan-Pelletier, V.M.. 1991. Calcium carbonate and calcium oxalate as cuticular hardening agents in oribatid mites (Acari: Oribatida). Canadian Journal of Zoology 69: 15041511.Google Scholar
Norton, R.A., Kethley, J.B., Johnston, D.E., and OConnor, B.M.. 1993. Phylogenetic perspectives on genetic systems and reproductive modes of mites, pp. 899in Wrensch, D., and Ebbert, M. (Eds.), Evolution and Diversity of Sex Ratios in Insects and Mites. Chapman Hall, New York, NY.Google Scholar
Norton, R.A., and MacNamara, M.C.. 1976. The common newt (Notopthalmus viridescens) as predator of soil mites in New York. Journal of the Georgia Entomological Society 11: 8993.Google Scholar
Norton, R.A., and Palmer, S.C.. 1991. The distribution, mechanisms, and evolutionary significance of parthenogenesis in oribatid mites, pp. 107136in Murphy, P.W., and Schuster, R. (Eds.), The Acari: Reproduction, Development and Life-history Strategies. Chapman and Hall Ltd., London.Google Scholar
Palmer, S.C. 1990. Thelytokous Parthenogenesis and Genetic Diversity in Nothroid Mites. Unpubl. Ph.D. thesis, State University of New York, Syracuse, NY. 144 pp.Google Scholar
Palmer, S.C., and Norton, R.A.. 1990. Further experimental proof of thelytokous parthenogenesis in oribatid mites (Acari: Oribatida: Desmonomata). Experimental Applied Acarology 8: 149159.Google Scholar
Palmer, S.C., and Norton, R.A.. 1991. Taxonomic, geographic, and seasonal distribution of thelytokous parthenogenesis in Desmonomata (Acari: Oribatida). Experimental Applied Acarology 12: 6781.Google Scholar
Peus, F. 1932. Die tierwelt der Moore unter besonderer Berucksichtigung der europaischen Hochmoore. Handbuch der Moorkunde, v.3 Berlin.Google Scholar
Popp, E. 1962. Semiaquatile Lebensräume (Bülten) in hoch-und Niedermooren. International Review der gesamten Hydrobiologie 47: 533579.Google Scholar
Pritchard, G. 1964. The prey of dragonfly larvae (Odonate: Anisoptera) in ponds in northern Alberta. Canadian Journal of Zoology 42: 785800.Google Scholar
Riha, G. 1951. Zur Ökologie der Oribatiden in Kalksteinboden. Zoologische Jahrbucher Abteilung für Systematik Oekologie und Geographie der Tiere 80: 407450.Google Scholar
Schmid, R. 1988. Morphologische Anpassungen in einem Rauber-Beute-System: Ameisenkafer (Scydmaenidae, Staphylinoidea) und gepanzerte Milben (Acari). Zoologische Jahrbucher Abteilung für Systematik Oekologie und Geographie der Tiere 115: 207228.Google Scholar
Schuster, R. 1966. Scydmaenidenlarven als Milbenrauber. Naturwissenschaften 53: 439440.Google Scholar
Sellnick, M. 1929. Die Oribatiden (Hornmilben) des Zehlaubruches. Schriften der Physikalisch-Okonomischen Gesellschaft zu Königsberg 66: 324351.Google Scholar
Siepel, H. 1990. Niche relationships between two panphytophagous soil mites, Nothrus silvestris Nicolet (Acari, Oribatida, Nothridae) and Platynothrus peltifer (Koch) (Acari, Oribatida, Camisiidae). Biology and Fertility of Soils 9: 139144.Google Scholar
Solhøy, T. 1979. Oribatids (Acari) from an oligotrophic bog in western Norway. Fauna Norvegica Series B 26: 9194.Google Scholar
Strenzke, K. 1952. Untersuchungen über die Tiergemeinschaften des Bodens; die Oribatiden und ihre Synusien in den Boden Norddeutschlands. Zoologica 104: 1173.Google Scholar
Tarras-Wahlberg, N. 1954. Oribatids from the Akhult mire. Oikos 4: 166171.Google Scholar
Tarras-Wahlberg, N. 1961. The Oribatei of a central Swedish bog and their environment. Oikos Supplementum 4: 156.Google Scholar
Williams, G.P. 1970. The thermal regime of a Sphagnum peat bog. Proceedings 3rd Peat Congress, Quebec (1968): 195200.Google Scholar
Willmann, C. 1928. Die Oribatidenfauna nordwestdeutscher und einiger suddeutscher Moore. Abhandlungen herausgegeben vom Naturwissenschaftlichen verein nu Bremen 27: 143176.Google Scholar
Willmann, C. 1931. Oribatiden aus dem Moosebruch. Archiv für Hydrobiologie 23: 333347.Google Scholar
Willmann, C. 1933. Acari aus dem Moosebruch. Zeitschrift für Morphologie und Ökologie der Tiere 27: 373383.Google Scholar