Hostname: page-component-5c6d5d7d68-7tdvq Total loading time: 0 Render date: 2024-08-17T00:17:43.390Z Has data issue: false hasContentIssue false

GEOGRAPHICAL AND ENVIRONMENTAL PATTERNS IN CADDISFLY (TRICHOPTERA) ASSEMBLAGES FROM COLDWATER SPRINGS IN CANADA

Published online by Cambridge University Press:  31 May 2012

Nancy E. Williams*
Affiliation:
Division of Life Sciences, Scarborough Campus, University of Toronto, 1265 Military Trail, Scarborough, Ontario, Canada MIC lA4 and Glaciated Basin Research Group, Department of Geology, Scarborough Campus, University of Toronto, 1265 Military Trail, Scarborough, Ontario, Canada M1C 1A4
Get access

Abstract

Caddisfly collections from 25 springs across Canada reveal some general trends and some regional and habitat-related differences in spring faunas. In general the number of caddisfly species present in springs increases with habitat diversity. Limnocrenes and rheocrenes with low current and small-sized substrate particles support few caddisfly species, but may have large populations of individual species. Species categorized as grazers, shredders, and predators are common in springs, but filter-feeders are rare.Eastern and western springs have many genera but few species in common. About 35% of the species recorded in this study are from the family Limnephilidae, but the most frequently encountered genus was Parapsyche (Hydropsychidae), usually P. apicalis (Banks) in the east and P. elsis Milne in the west (British Columbia and Alberta). Other common genera in both east and west were Neophylax, Lepidostoma, and Rhyacophila. Common genera collected only in the west were Anagapetus, Homophylax, Psychoglypha, and Neothremma, and Frenesia and Pseudostenophylax were taken only in the east. Three analytical techniques — ordination by detrended correspondence analysis, constrained ordination by canonical correspondence analysis, and classification by two-way indicator species analysis — all confirmed an east/west geographical difference in caddisfly communities and pointed to elevation, extent of groundwater source, and summer temperature as environmental factors influencing, but not totally responsible for, east/west species distributions. Past and present barriers to migration both appear to be important. Riparian vegetation, current, substrate particle size, microhabitat diversity, and pH all have strong influences upon the composition of spring communities in both the east and the west. Springs in which caddisflies were primarily associated with detrital processing were dominated by Frenesia and Lepidostoma in the east but by Homophylax in the west. Scrapers and predators were abundant only in springs with relatively high microhabitat diversity, current speed, and PH.

Résumé

Les collections de phryganes provenant de 25 sources à travers le Canada révèlent quelques tendances générales et quelques différences de la faune des sources reliées à la région et à l'habitat. En général, le nombre d'espèces de phryganes dans les sources augmente avec la diversité d'habitat. Les limnocrènes et les rhéocrènes à faible courant et au substrat composé de petites particules maintiennent peu d'espèces de phryganes, mais peuvent avoir de grandes populations d'une seule espèce. Les espèces qui sont classées comme brouteurs, dechetiqueurs et prédateurs sont communes aux sources, mais les filtreurs sont rares.Plusieurs genres mais peu d'espèces sont communs aux sources de l'est et de l'ouest du Canada. Quelques 35% des espèces observées dans cette étude sont de la famille Limnephilidae, mais le genre le plus fréquemment rencontré a été Parapsyche (Hydropsychidae), habituellement P. apicalis (Banks) dans l'est du Canada et P. elsis Milne dans l'ouest (C.B. et Alberta). D'autres genres communs autant à l'est qu'à l'ouest ont été Neophylax, Lepidostoma et Rhyacophila. Les genres communs uniquement retrouvés dans l'ouest ont été Anagapetus, Homophylax, Psychoglypha et Neothremma; tandis que Frenesia et Pseudostenophylax n'ont été retrouvé que dans l'est. Trois méthodes d'analyse — ordination par analyse de correspondance désorientée; ordination contrainte par analyse de correspondance canonique; et classification par analyse d'espèce indicateur duodirectionnelle — ont tous confirmé une différence géographique est/ouest en ce qui concerne les communautés de phryganes et ont démontré que l'elevation, l'étendue de l'origine de la nappe d'eau et la température estivale constituent des facteurs environnementaux qui influencent, sans pour autant être entièrement responsable, les distributions est/ouest des espèces. Les obstacles du passé et du présent à la migration semblent importants. La végétation riparienne, le courant, la taille des particules du substrat, la diversité du microhabitat et le pH, tous ont de fortes influences sur la composition des communautés des sources de l'est et de l'ouest. Les sources dans lesquelles les phryganes ont été principalement associées avec le traitement des détritus ont été dominées par Frenesia et par Lepidostoma dans l'est, mais par Homophylax dans l'ouest. Les râpeurs et les prédateurs n'ont été abondants qu'aux sources où la diversité en microhabitats, la vitesse du courant et le pH étaient relativement élevés.

Type
Research Article
Copyright
Copyright © Entomological Society of Canada 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Beam, B.D., and Wiggins, G.B.. 1987. A comparative study of the biology of five species of Neophylax (Trichoptera: Limnephilidae) in southern Ontario. Can. J. Zool. 65: 17411754.Google Scholar
Glazier, D.S., and Gooch, J.L.. 1987. Macroinvertebrate assemblages in Pennsylvania (U.S.A.) springs. Hydrobiologia 150: 3343.Google Scholar
Higler, L.W.G., Torenbeek, R., and Verdonschot, P.F.M.. 1987. A new ordination technique for ecological purposes applied to caddis larvae in ditches. pp. 299303in Bournaud, M., and Tachet, H. (Eds.), Proc. 5th Int. Symp. on Trichoptera. Junk, The Hague.Google Scholar
Hill, M.O. 1979 a. TWINSPAN — a fortran programme for arranging multivariate data in an ordered two-way table by classification of the individuals and attributes. Ecology and Systematics, Cornell University, Ithaca, NY 14850, USA.Google Scholar
Hill, M.O. 1979 b. DECORANA — a fortran programme for detrended correspondence analysis and reciprocal averaging. Ecology and Systematics, Cornell University, Ithaca, NY 14850, USA.Google Scholar
Matthews, J.V. Jr., 1979. Tertiary and Quaternary environments: Historical background for an analysis of the Canadian insect fauna. pp. 31–86 in Danks, H. V. (Ed.), Canada and its Insect Fauna. Mem. ent. Soc. Can. 108. 573 pp.Google Scholar
Minckley, W.L. 1963. The ecology of a spring stream, Doe Run, Meade County, Kentucky. Wildlf. Monogr. 11: 1124.Google Scholar
Minshall, G.W. 1968. Community dynamics of the benthic fauna in a woodland springbrook. Hydrobiologia 32: 305339.Google Scholar
Odum, H.T. 1957. Trophic structure and productivity of Silver Springs, Florida. Ecol. Monogr. 27: 55112.Google Scholar
Resh, V.H. 1983. Spatial differences in the distribution of benthic macroinvertebrates along a springbrook. Aquat. Insects 5: 193200.Google Scholar
Stern, M.S., and Stern, D.H.. 1969. A limnological study of a Tennessee cold springbrook. Am. midl. Nat. 82: 6282.Google Scholar
Teal, J.M. 1957. Community metabolism in a temperate cold spring. Ecol. Monogr. 27: 283302.Google Scholar
Ter Braak, C.J.F. 1988. CANOCO — a fortran programme for canonical community ordination by partial detrended canonical correspondence analysis, principal components analysis and redundancy analysis (version 2.1). Technical Report LWA-88-02, Agricultural Mathematics Group, Box 100, 6700 AC Wageningen, The Netherlands. 95 pp.Google Scholar
Tilly, L.J. 1968. The structure and dynamics of Cone Spring. Arch. Hydrobiol. 68: 126142.Google Scholar
Townsend, C.R., Hildrew, A.G., and Francis, J.. 1983. Community structure in some southern English streams: The influence of physicochemical factors. Freshwat. Biol. 13: 521544.Google Scholar
Ward, J.V., and Dufford, R.G.. 1979. Longitudinal and seasonal distribution of macroinvertebrates and epilithic algae in a Colorado springbrook-pond system. Arch. Hydrobiol. 86: 284321.Google Scholar
Wiggins, G. B. 1977. Larvae of the North American Caddisfly Genera (Trichoptera). University of Toronto Press, Toronto, Ont.401 pp.Google Scholar
Wiggins, G. B. 1984. Trichoptera. pp. 271311in Merritt, R.W., and Cummins, K.W. (Eds.), An Introduction to the Aquatic Insects of North America, 2nd ed. Kendall/Hunt Publ. Co., Dubuque, IA.Google Scholar
Wiggins, G.B., and Mackay, R.J.. 1978. Some relationships between systematics and trophic ecology in nearctic aquatic insects, with special reference to Trichoptera. Ecology 59: 12111220.Google Scholar
Williams, D.D., and Hogg, I.D.. 1988. Ecology and production of invertebrates in a Canadian coldwater spring-springbrook system. Holarct. Ecol. 11: 4154.Google Scholar
Williams, D.D., and Williams, N.E.. 1987. Trichoptera from cold freshwater springs in Canada: Records and comments. Proc. ent. Soc. Ont. 118: 1323.Google Scholar