Hostname: page-component-7bb8b95d7b-w7rtg Total loading time: 0 Render date: 2024-09-18T04:06:20.207Z Has data issue: false hasContentIssue false

MODELLING APPLIED TO THE ANALYSIS OF CROP–PEST-MANAGEMENT INTERACTIONS

Published online by Cambridge University Press:  31 May 2012

W.J. Bloomberg*
Affiliation:
Canadian Forestry Service, Pacific Forestry Centre, 506 W. Burnside Rd., Victoria, B.C. V8Z IM5
Get access

Abstract

Fusarium attacking the roots of Douglas-firs in a forestry nursery was the focus of a computer simulation model that was tested against several years of nursery disease observations. Soil temperature, seedling growth, disease spread, and inoculum density and distribution were studied and their effects on measures to control Fusarium root rot were simulated. Interactions of these factors in space and time were examined from seedling germination to end of the growing season. The results from the model indicated that low soil temperature at the beginning of the growing season, rapid seedling growth, and reduction of disease inoculum levels in the upper soil horizons were the optimum prescription for disease reduction.

Résumé

On décrit un système d'interactions maladies–cultures–ravageurs dans une pépinière forestière selon les variables et les processus qui engendrent des interactions présentant un intérêt pour la gestion des cultures. On a mis à l'essai un modèle de simulation sur ordinateur en se fondant sur plusieurs années d'observation des maladies en pépinière, et les résultats se sont avérés suffisamment précis. On a étudié les effets des régimes de température du sol, des taux de croissance des semis, des taux de propagation des maladies ainsi que de la densité et de la répartition de la contamination dans des limites permettant des pratiques de gestion réalistes. On a examiné les interactions de ces facteurs dans le temps et dans l'espace à partir de la germination jusqu'à la fin de la saison de croissance. Les résultats fournis par le modèle ont montré l'importance de la modification de la température du sol au début de la saison de croissance, du maintien du taux de croissance rapide des semis et de la diminution des taux de contamination dans les horizons supérieurs du sol, si l'on veut réduire les maladies le plus possible.

Type
Research Article
Copyright
Copyright © Entomological Society of Canada 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bloomberg, W.J. 1973. Fusarium root rot of Douglas-fir seedlings. Phytopathology 63: 337341.Google Scholar
Bloomberg, W.J. 1974. Two techniques for examining root distribution. Can. J. Plant Sci. 54: 865868.Google Scholar
Bloomberg, W.J. 1976a. Simulation of Douglas-fir seedling root growth, damping-off and root rot. Environment Canada, Canadian Forestry Service, Ottawa, Report BC-X-127. 43 pp.Google Scholar
Bloomberg, W.J. 1976b. Distribution and pathogenicity of Fusarium oxysporum in a forest nursery soil. Phytopathology 66: 10901092.Google Scholar
Bloomberg, W.J. 1979a. A model of damping-off and root rot of Douglas-fir seedlings caused by Fusarium oxysporum. Phytopathology 69: 7481.Google Scholar
Bloomberg, W.J. 1979b. Model simulations of infection of Douglas-fir seedlings by Fusarium oxysporum. Phytopathology 69: 10721077.Google Scholar
Bloomberg, W.J. 1981. Disease caused by Fusarium in forest nurseries, pp. 178187in Cook, R.J., Nelson, P.E., and Toussoun, T.A. (Eds.), Fusarium, Penn. State Univ. Press, University Park.Google Scholar
Brix, H. 1967. An analysis of dry matter production of Douglas-fir seedlings in relation to temperature and light intensity. Can. J. Bot. 45: 20632072.Google Scholar
Brix, H. 1971. Growth response of western hemlock and Douglas-fir seedlings to temperature regimes during day and night. Can. J. Bot. 49: 289294.Google Scholar
Cleary, B.D., and Waring, R.H.. 1969. Temperature: collection of data and its analysis for the interpretation of plant growth and distribution. Can. J. Bot. 47: 167173.Google Scholar
Holling, C.S. 1966. The strategy of building models of complex ecological systems, pp. 195214in Watt, K.E.F. (Ed.), Systems Analysis in Ecology, Academic Press, New York.Google Scholar
Lavender, D.P., Ching, K.K., and Hermann, R.K.. 1968. Effect of environment on the development of dormancy and growth of Douglas-fir seedlings. Bot. Gaz. 129: 7083.Google Scholar
Lavender, D.P., and Overton, W.S.. 1972. Thermoperiods and soil temperatures as they affect growth and dormancy of Douglas-fir seedlings of different geographic origin. Oregon State Univ., Forestry Research Laboratory, Corvallis, Paper 13. 26 pp.Google Scholar
Salisbury, P.J. 1952. The effect of temperature and hydrogen-ion concentration on growth of certain cultures of Fusarium oxysporum isolated from Douglas-fir seedlings. Can. Dept. Agric. For. Biol. Div., Ottawa (unpublished).Google Scholar
Shea, K.R., and Rediske, J.H.. 1961. Pathological aspects of germination and survival of Douglas-fir seedlings in controlled environment. Weyerhaeuser Co., For. Res. Note 41. 8 pp.Google Scholar
Steinbrenner, E.C., and Rediske, J.H.. 1964. Growth of Ponderosa pine and Douglas-fir in a controlled environment. Weyerhaeuser Co., For. Paper 1. 31 pp.Google Scholar
Tint, H. 1945a. Studies in the Fusarium damping-off of conifers. 2: relation of age of host, pH, and some nutritional factors to pathogenicity of Fusarium. Phytopathology 35: 440457.Google Scholar
Tint, H. 1945b. Studies in the Fusarium damping-off of conifers. 3: relation of temperature and sunlight to pathogenicity of Fusarium. Phytopathology 35: 498510.Google Scholar
Van den Driessche, R. 1968. A comparison of growth responses of Douglas-fir and Sitka spruce to different nitrogen, phosphorus, and potassium levels in sand culture. Can. J. Bot. 46: 531537.Google Scholar
Van den Driessche, R. 1969. Forest nursery handbook. British Columbia For. Serv. Res. Note 48. 44 pp.Google Scholar