Hostname: page-component-7bb8b95d7b-l4ctd Total loading time: 0 Render date: 2024-09-12T11:31:26.487Z Has data issue: false hasContentIssue false

Les verres métalliques massifs : matériaux à faible ou à fort coefficient d’amortissement ?*

Published online by Cambridge University Press:  23 December 2011

J. M. Pelletier*
Affiliation:
Université de Lyon, MATEIS, UMR CNRS, INSA-Lyon, Bât. B. Pascal, 69621 Villeurbanne Cedex, France. e-mail : Jean-marc.pelletier@insa-lyon.fr
Get access

Abstract

Les verres métalliques présentent des caractéristiques très intéressantes, en particulier leurs propriétés élastiques, combinées avec une relative facilité de mise en œuvre à température pas trop élevée. C’est ce qui conduit à leur utilisation comme matériau pour des composants en micro-mécanique, des matériels sportifs, des boitiers pour la téléphonie ou l’informatique. Mais pour de nombreuses applications une autre caractéristique mécanique peut être essentielle : leur coefficient d’amortissement. Si par exemple pour certaines pièces mécaniques un rendu optimal de l’énergie est requis (cas par exemple d’une raquette de tennis de haute performance), une forte capacité d’amortissement peut en revanche être indispensable pour d’autres composants mécaniques. Le coefficient d’amortissement dépend pour un matériau donné, notamment de la fréquence de sollicitation et de la température. Pour les verres métalliques, il apparaît schématiquement deux domaines : – À basse température, c’est-à-dire par exemple à la température ambiante pour les verres métalliques massifs base zirconium, palladium ou cuivre, le coefficient d’amortissement est très faible, de l’ordre de quelques 10-6, une valeur proche de celle observée dans la silice de très haute pureté. Combinée au caractère conducteur du matériau, ceci permet d’envisager l’application de ces matériaux pour la réalisation d’éléments de résonateurs. Un exemple, celui d’un résonateur hémisphérique pour application gyroscopique est présenté en détail. Il est montré dans ce cas que des traitements thermiques appropriés peuvent conduire à l’amélioration des caractéristiques recherchées. – À haute température, c’est-à-dire au voisinage de la température de transition vitreuse. Celle-ci se situe pour les matériaux considérés (base Zr, base Pd ou base Cu) aux alentours de 400 °C. À l’instar de tous les autres matériaux amorphes, le coefficient d’amortissement devient alors très grand et des valeurs du facteur de perte supérieures à 1 sont fréquemment observées. Ceci résulte de la mobilité atomique ou moléculaire qui devient alors très importante, entrainant une dissipation d’énergie importante lors de toute sollicitation mécanique. Dans ces conditions l’effet de la fréquence devient très net. Ces différents résultats, obtenus lors d’essais mécaniques dynamiques, sont corroborés par des essais de caractérisation de la microstructure du matériau, notamment par diffraction des rayons X in-situ. Différents modèles physiques permettant de comprendre le comportement mécanique en lien avec la nature du matériau sont présentés.

Type
Research Article
Copyright
© EDP Sciences, 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Références

Klement, W., Willens, R.H., Duwez, P., Nature 187 (1960) 869
Peker, A., Johnson, W.L., Appl. Phys. Lett. 63 (1993) 234
Johnson, W.L., Mater. Sci. Forum 225-227 (1996) 35
Bush, R., Johnson, W.L., Appl. Phys. Lett. 72 (1998) 2695
Bush, R., Bakke, E., Johnson, W.L., Acta Mater. 46 (1998) 4725
Inoue, A., Mater. Trans. JIM 36 (1995) 866
Kato, H., Inoue, A., Chen, H.S., Acta Mater. 54 (2006) 891
Kato, H., Inoue, A., Chen, H.S., J. Non-Cryst. Solids 353 (2007) 3764
Huan, Y.J., Shen, J., Sun, J.F., Yu, X.B., J. Alloys Compd. 427 (2007) 171
Etienne, S., Cavaille, J.Y., Perez, J., Point, R., Salvia, M., Rev. Sci. Inst. 53 (1982) 1261
Inoue, A., Takeuchi, A., Acta Mater. 59 (2011) 2243-2267
Kumar, G., Schroers, J., Appl. Phys. Lett. 92 (2008) 031901-031903
Schroers, J., Acta Mater. 56 (2008) 471-481
A.S. Nowick, B.S. Berry, Anelastic relaxations in Crystalline Solids, Academic Press, NY, 1972
R. Schaller, G. Fantozzi, G. Gremaud, Mechanical Spectroscopy, Trans. Tech. publications, Switzerland, 2001
Zener, C., Phys. Rev. 52 (1937) 230
Zener, C., Phys. Rev. 53 (1937) 91
C. Zener, Elasticity and anelasticity of metals, The university of chigago press, 1948
Cohen, M.H., Turnbull, D., J. Chem. Phys. 31 (1959) 1164
Cohen, M.H., Grest, G.S., Phys. Rev. B 21 (1980) 4113
de Hey, P., Sietsma, J., van den Beukel, A., Acta Mater. 46 (1998) 5873
Spaepen, F., Scripta Mater. 54 (2006) 363
Adam, G., Gibbs, J.H., J. Chem. Phys. 43 (1965) 139
Tsang, K.Y., Ngai, K.L., Phys. Rev. E 54 (1996) 3067
Ngai, K.L., Phys. Rev. E 57 (1998) 7346
Parisi, G., Mezard, M., Phys. Rev. Lett. 82 (1999) 747
Debenedetti, P.G., Stillinger, F.H., Nature 410 (2001) 259
W. Götze, L. Sjoegren, Rep. Prog. Phys. 55 (1992); W. Götze, J. Phys. : Condens. Matter. 11 (1999) A1
Langer, J.S., Scripta Mater. 54 (2006) 375
Rekhson, S., J. Non-Cryst. Solids 131-133 (1991) 467
Granato, A.V., J. Alloys Compd. 355 (2003) 171
Argon, A.S., Acta Metall. 27 (1977) 47
Cavaille, J.Y., Perez, J., Johari, G.P., Phys. Rev. B 39 (1989) 2411
Perez, J., Cavaille, J.Y., Tatibouet, J., J. Chim. Phys. 87 (1990) 1923
Cavaille, J.Y., Perez, J., Johari, G.P., J. Non-Cryst. Solids 131 (1991) 935
Perez, J., Polymer 29 (1998) 483
Gauthier, C., Pelletier, J.M., David, L., Vigier, G., Perez, J., J. Non Cryst. Solids 274 (2000) 181
Munch, E., Pelletier, J.M., Sixou, B., Vigier, G., Polymer 47 (2006) 3477
Palmer, R.G., Stein, D.L., Abrahams, E., Anderson, P.W., Phys. Rev. Lett. 53 (1984) 958
Pelletier, J.M., Van de Moortèle, B., J. Non-Cryst. Solids 325 (2007) 133
Pelletier, J.M., Van de Moortèle, B., J. Non-Cryst. Solids 353 (2007) 3750
Van de Moortèle, B., Epicier, T., Pelletier, J.M., Soubeyroux, J.L., J. Non-Cryst. Solids 345-346 (2004) 169
Pelletier, J.M., Van de Moortele, B., Lu, I.R., Mater. Sci. Eng. A 336 (2002) 190
Q. Wang, J.M. Pelletier, J.J. Blandin, J. Alloys Compd. (2010) sous presse
Schröter, K., Wilde, G., Willnecker, R., Weiss, M., Samwer, K., Donth, E., Eur. Phys. J. B 5 (1998) 1
Donzel, L., Lakki, A., Schaller, R., Philos. Mag. A 76 (1997) 933
Schröter, K., Donth, E., J. Non-Cryst. Solids. 307-310 (2002) 270
Perera, D.N., J. Phys. : Condens. Matter. 11 (1999) 3807
Perera, D.N., Tsai, A.P., J. Phys. D : Appl. Phys. 32 (1999) 2933
C. Haon, Ph.D., Grenoble, 2006
Haon, C., Saqure, H., Daniel, M., Drevet, B., Camel, D., Garandet, J.P., Pelletier, J.M., Eustathopoulos, N., Mater. Sci. Eng. A 495 (2008) 215