Hostname: page-component-77c89778f8-vpsfw Total loading time: 0 Render date: 2024-07-21T20:13:10.438Z Has data issue: false hasContentIssue false

Prove of hydrogen formation through direct potential measurements in the rolling slit during cold rolling

Published online by Cambridge University Press:  04 April 2014

S.V. Merzlikin
Affiliation:
Max Planck Institute for Iron Research, Max-Planck-Str. 1, 40237 Düsseldorf, Germany Institute for Chemical Technology of Inorganic Materials, Johannes Kepler University Linz, Altenberger Str. 69, 4040 Linz, Austria. e-mail: achimwalter.hassel@jku.at
M. Wildau*
Affiliation:
Ingenieurbüro Dr.-Ing Monika Wildau, Am Kerper Weiher, 41352 Korschenbroich, Germany
K. Steinhoff
Affiliation:
Steinhoff Kaltwalzen GmbH, Gerhard-Malina-Str. 65, Dinslaken, Germany
A.W. Hassel
Affiliation:
Institute for Chemical Technology of Inorganic Materials, Johannes Kepler University Linz, Altenberger Str. 69, 4040 Linz, Austria. e-mail: achimwalter.hassel@jku.at
*
Deceased on 23/12/2013.
Get access

Abstract

In this work, direct potential measurements during cold rolling of zinc and X20Cr13 stainless steel were carried out in the rolling slit to follow the tribologic and galvanic mechanisms of hydrogen formation and absorption on the surface of the working rolls made of DHQ1 grade steel. An Ag/AgCl in 3.5 M KCl reference microelectrode was used to record the open circuit potential of the electrochemical system roller-product immersed into commercially relevant electrolyte (rolling emulsion) with a pH value of 4.5 and an electric conductivity 46 mS cm-1. The potential shift into either negative or positive direction of the rolls-product system gives information on the processes taking place at the surface in the course of the friction. A detailed discussion of the in-situ potentiometry experiments reveals a stationary situation established between the destruction and repassivation of the surface structures during continuous cold rolling accompanied with intensive hydrogen evolution. Galvanic coupling of the working rolls with the product significantly intensifies the hydrogen embrittlement related problems of the rolls. Atomic hydrogen is adsorbed on the surface and exhibits a pressure supported absorption into the rolls during their whole lifetime.

Type
Research Article
Copyright
© EDP Sciences 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

I.M. Bernstein, Hydrogen Effects in Materials, in: A.W. Thompson, N.R. Moody (Eds.), TMS, Warrendale, PA, 1996, p. 3
Nagumo, M., ISIJ Int. 41 (2001) 590-598
Hirth, J.P., Metall. Trans. A 11 (1980) 861-890
Sofronis, P., Robertson, I.M., AIP Conference Proceedings 837 (2006) 64-70
Merzlikin, S.V., Hassel, A.W., Steinhoff, K., Wildau, M., Practical Metallography 07 (2011) 365-375
Hassel, A.W., Lohrengel, M.M., Electrochim. Acta 40 (1995) 433-437
G.P. Shpenkov, in Tribology Series. 29 D. Dowson (Ed.), Friction Surface Phenomena, Elsevier, 1995
Akiyama, E., Stratmann, M., Hassel, A.W., J. Phys. D 39 (2006) 3157-3164
Abelev, E., Smith, A.J., Hassel, A.W., Ein Eli, Y., J. Electrochem. Soc. 153 (2006) B337-B343
Hassel, A.W., Smith, A.J., Corros. Sci. 49 (2007) 231-239
Weisz-Patrault, D., Ehrlacher, A., Legrand, N., J. Mater. Process. Technol. 211 (2011) 1500-1509
Hassel, A.W., Fushimi, K., Seo, M., Electrochem. Commun. 1 (1999) 180-183
Celis, J.-P., Ponthiaux, P., Wenger, F., Wear 261 (2006) 939-946
Mischler, S., Debaud, S., Landolt, D., J. Electrochem. Soc. 145 (1998) 750-758
Rossi, S., Deflorian, F., Zen, M., Fedrizzi, L., Mater. Corros. 51 (2000) 552-556
Shyrokov, V.V., Vasyliv, Kh.B., Mater. Sci. 44 (2008) 646-652
G. Milazzo, S. Caroli, V.K. Sharma, Tables of Standard Electrode Potentials, Wiley, Chichester, 1978
A.J. Bard, R. Parsons, J. Jordan, Standard Potentials in Aqueous Solutions, Marcel Dekker, New York, 1985
Bratsch, S.G., J. Phys. Chem. Ref. Data 18 (1989) 121
Landolt, D., Mischler, S., Stemp, M., Barril, S., Wear 256 (2004) 517524
Landolt, D., Mischler, S., Stemp, M., Electrochim. Acta 46 (2001) 39133929
Oltra, R., Chapey, B., Renaud, L., Wear 186-187 (1995) 533-541
M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solutions, Pergamon Press, Oxford, 1966
Sholud’ko, V.P., Fiz.-Khim. Mekh. Mater. 18 (1982) 8992
Ng, Dedy, Sen, Tapajyoti, Gao, Feng, Liang, Hong, J. Electrochem. Soc. 155 (2008) H520-H524
Anderson, T.N., Anderson, J.L., Eyring, H., J. Phys. Chem. 73 (1969) 3562-3570
Burstein, G.T., Kearns, M.A., J. Electrochem. Soc. 131 (1984) 991
Tsuru, T., Mater. Sci. Eng. A 146 (1991) 1-14
Bjornkvist, L., Olefjord, I., Corros. Sci. 32 (1991) 231-242
Drazic, D.M., Popic, J.P., Corrosion 60 (2003) 297-303
Trasatti, S., J. Electroanal. Chem. 33 (1971) 351-378
Simao, J., Aspinwall, D.K., J. Mater. Process. Technol. 92-93 (1999) 281-287
Fedrizzi, L., Rossi, S., Bellei, F., Deflorian, F., Wear 253 (2002) 1173-1181
FARADAYIC® Process for Chromium Plating from a Trivalent Bath, http://www.faradaytechnology.com/PDF files/Industrial Coatings
EPA, Final Report: A Cost-Competitive Functional Trivalent Chromium Plating Process To Replace Hexavalent Chromium Plating http://cfpub.epa.gov
Signorelli, J.W., Serenelli, M.J., Bertinetti, M.A., J. Mater. Process. Technol. 211 (2011) 1500-1509