Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-22T19:52:18.790Z Has data issue: false hasContentIssue false

Absorption and Phase Contrast X-Ray Imaging in Paleontology Using Laboratory and Synchrotron Sources

Published online by Cambridge University Press:  26 August 2015

Pidassa Bidola*
Affiliation:
Department of Physics, Technische Universität München, 85748 Garching, Germany
Marco Stockmar
Affiliation:
Department of Physics, Technische Universität München, 85748 Garching, Germany
Klaus Achterhold
Affiliation:
Department of Physics, Technische Universität München, 85748 Garching, Germany
Franz Pfeiffer
Affiliation:
Department of Physics, Technische Universität München, 85748 Garching, Germany
Mírian L.A.F. Pacheco
Affiliation:
Department of Biology, Federal University of São Carlos, Campus Sorocaba, 18052780-Sorocaba, SP—Brazil
Carmen Soriano
Affiliation:
Advanced Photon Source—Argonne National Laboratory, 9700S Cass ave, Lemont, IL 60439, USA
Felix Beckmann
Affiliation:
Institute for Materials Research, Helmholtz-Centre Geesthacht, 21502 Geesthacht, Germany
Julia Herzen
Affiliation:
Department of Physics, Technische Universität München, 85748 Garching, Germany
*
*Corresponding author.pidassa.bidola@tum.de
Get access

Abstract

X-ray micro-computed tomography (μCT) is commonly used for imaging of samples in biomedical or materials science research. Owing to the ability to visualize a sample in a nondestructive way, X-ray μCT is perfectly suited to inspect fossilized specimens, which are mostly unique or rare. In certain regions of the world where important sedimentation events occurred in the Precambrian geological time, several fossilized animals are studied to understand questions related to their origin, environment, and life evolution. This article demonstrates the advantages of applying absorption and phase-contrast CT on the enigmatic fossil Corumbella werneri, one of the oldest known animals capable of building hard parts, originally discovered in Corumbá (Brazil). Different tomographic setups were tested to visualize the fossilized inner structures: a commercial laboratory-based μCT device, two synchrotron-based imaging setups using conventional absorption and propagation-based phase contrast, and a commercial X-ray microscope with a lens-coupled detector system, dedicated for radiography and tomography. Based on our results we discuss the strengths and weaknesses of the different imaging setups for paleontological studies.

Type
Biological Applications
Copyright
© Microscopy Society of America 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abel, R., Laurini, C. & Richter, M. (2012). A paleontologist’s guide to ‘virtual’ micro-ct preparation. Palaeogia Electronica 15(2), 6T17P.Google Scholar
Babcock, L., Grunow, A., Sadowski, G. & Leslie, S. (2005). Corumbella, an Ediacaran-grade organism from the late Neopretorozoic of Brazil. J Palaeo 220(1–2), 718.Google Scholar
Beckmann, F., Dose, T., Lippmann, T., Martins, R.V. & Schreyer, A. (2007). The new materials science beamline HARWI-II at DESY. In AIP Conference Proceedings, SRI 2006, Daegu, Korea.CrossRefGoogle Scholar
Betz, O., Wegst, U., Weide, D., Heethoff, M., Helfen, L., Lee, W.-K. & Cloetens, P. (2007). Imaging applications of synchrotron X-ray phase-contrast microtomography in biological morphology and biomaterials science. I. General aspects of the technique and its advantages in the analysis of millimeter-sized arthropod structure. J Microsc 227(Pt 1), 5171.Google Scholar
Bonse, U. & Busch, F. (1996). X-ray computed microtomography (μCT) using synchrotron radiation (SR). Prog Biophys Mol Biol 65(1–2), 133169.Google Scholar
Bonse, U. & Hart, M. (1965). An X‐ray interferometer. Appl Phys Lett 6(8), 155156.Google Scholar
Bonse, U., Johnson, Q., Nichols, M., Nusshardt, R., Krasnicki, S. & Kinney, J. (1986). High-resolution tomography with chemical specificity. Nucl Instr Meth Phys Res A 246(1–3), 644648.CrossRefGoogle Scholar
Brunke, O., Brockdorf, K., Drews, S., Müller, B., Donath, T., Herzen, J. & Beckmann, F. (2008). Comparison between X-ray tube based and synchrotron radiation based μCT. In Optical Engineering+Applications. International Society for Optics and Photonics, pp. 70780U–70780U.CrossRefGoogle Scholar
Chen, J.-Y., Bottjer, D.J., Davidson, E.H., Li, G., Gao, F., Cameron, A.R., Hadfield, M.G., Xian, D.-C., Tafforeau, P., Jia, Q.-J., Sugiyama, H. & Tang, R. (2009 a). Phase contrast synchrotron X-ray microtomography of Ediacaran (doushantuo) metazoan microfossils: Phylogenetic diversity and evolutionary implications. Precambrian Res 173, 191200.CrossRefGoogle Scholar
Chen, J.Y., Bottjer, D.J., Li, G., Hadfield, M.G., Gao, F., Cameron, AR, Zhang, C.-Y., Xian, D.-C., Tafforeau, P., Liao, X. & Yin, Z.-J. (2009 b). Complex embryos displaying bilaterian characters from Precambrian Doushantuo phosphate deposits, Weng’an, Guizhou, China. Proc Natl Acad Sci USA 106, 1905619060.Google Scholar
Cloetens, P., Barrett, R., Baruchel, J., Guigay, J.-P. & Schlenker, M. (1996). Phase objects in synchrotron radiation hard X-ray imaging. J Phys D Appl Phys 29, 133.Google Scholar
Flannery, B.P., Deckman, H.W., Roberge, W.G. & D’Amico, K.L. (1987). Three-dimensional X-ray microtomography. Science 237(4821), 14391444.Google Scholar
Grodzins, L. (1983). Optimum energies for X-ray transmission tomography of small samples: Applications of synchrotron radiation to computerized tomography I. Nucl Instrum Met Phys Res 206(3), 541545.Google Scholar
Hahn, G., Hahn, R., Leonardos, O.H., Pflug, H.D. & Walde, D.H.G. (1982). Körperliche erhaltene Scyphozoen-Reste aus dem Jungpräkambrium Brasiliens. Geol Palaeontol 16, 118.Google Scholar
Hounsfield, G.N. (1973). Computerized transverse axial scanning (tomography): Part I. Description of system. Br J Radiol 46, 10161022.Google Scholar
Maire, E. & Withers, P.J. (2014). Quantitative X-ray tomography. Int Mater Rev 59(1), 143.CrossRefGoogle Scholar
McCollough, C.H., Chen, H.G., Kalender, W., Leng, S., Samei, E., Taguchi, K., Wang, G., Yu, L. & Pettigrew, R.I. (2012). Achieving routine submillisievert CT scanning: Report from the summit on management of radiation dose in CT. Radiology 264(2), 567580.CrossRefGoogle ScholarPubMed
Natterer, F. (2001). The Mathematics of Computerized Tomography, Volume 32 of Classics in Applied Mathematics. Society for Industrial and Applied Mathematics, Philadelphia, 2001, ISBN 0898714931.Google Scholar
Natterer, F. & Ritman, E.L. (2002). Past and future directions in X-ray computed tomograph (CT). Int J Imag Syst Technol 12, 175187.CrossRefGoogle Scholar
Pacheco, M., Galante, D., Leme, J., Rodrigues, F., Bidola, P., Hagadorn, W., Stockmar, M., Herzen, J., Pfeiffer, F. & Marques, A.C. (2015). Insights into the skeletonization, lifestyle, and affinity of the unusual Ediacaran fossil Corumbella. PLoS One 10(3), e0114219.CrossRefGoogle Scholar
Pacheco, M.L.A.F., Leme, J. & Machado, A. (2011). Taphonomic analysis and geometric modeling for the reconstitution of the Ediacaran metazoan Corumbella werneri (Hahn et al., 1982), (Tamengo Formation, Corumba Basin, Brasil). J Taphonomy 9(4), 269283.Google Scholar
Paganin, D., Mayo, S.C., Gureyev, T.E., Miller, P.R. & Wilkins, S.W. (2002). Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object. J Microsc 206(1), 3340.Google Scholar
Rueckel, J., Stockmar, M., Pfeiffer, F. & Herzen, J. (2014). Spatial resolution characterization of a X-ray microCT system. Appl Radiat Isot 94, 230234.Google Scholar
Singhal, A., Grande, J.C. & Zhou, Y. (2013). Micro/nano-CT for visualization of internal structures. Micros Today 21(02), 1622.Google Scholar
Snigirev, A., Snigireva, I., Kohn, V., Kuznetsov, S. & Schelokov, I. (1995). On the possibilities of X-ray phase contrast microimaging by coherent high-energy synchrotron radiation. Rev Sci Instrum 66, 54865492.Google Scholar
Tafforeau, P., Boistel, R., Boller, E., Bravin, A., Brunet, M., Chaimanee, Y., Cloetens, P., Feist, M., Hoszowska, J., Jaeger, J.-J., Kay, R., Lazzari, V., Marivaux, L., Nel, A., Nemoz, C., Thibault, X., Vignaud, P. & Zabler, S. (2006). Applications of X-ray synchrotron microtomography for non-destructive 3D studies of paleontological specimens. Appl Phys A 83, 195202.Google Scholar
van Iten, V., Vyhlasova, Z., Zhu, M. & Yi, Q. (2005). Widespread occurrence of microscopic pores in conulariids. J Paleontol 79, 400407.Google Scholar
Warren, L., Pacheco, M., Fairchild, T., Simões, M., Riccomini, C., Boggiani, P. & Cáceres, A. (2012). The dawn of animal skeletogenesis: Ultrastructural analysis of the Ediacaran metazoan Corumbella werneri. Geology 40, 691694.Google Scholar
Weitkamp, T., Haas, D., Wegrzynek, D. & Rack, A. (2011). Ankaphase: Software for single-distance phase retrieval from inline X-ray phase-contrast radiographs. J Synchrotron Radiat 18, 617629.Google Scholar