Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-17T00:28:04.270Z Has data issue: false hasContentIssue false

Atom Probe Tomography for Isotopic Analysis: Development of the 34S/32S System in Sulfides

Published online by Cambridge University Press:  12 November 2021

Phillip Gopon*
Affiliation:
Department of Applied Geosciences and Geophysics, University of Leoben, Leoben, AT 8700, Austria Department of Materials, University of Oxford, Oxford OX1 3PH, UK Department of Earth Sciences, University of Oxford, Oxford OX1 3AN, UK
James O. Douglas
Affiliation:
Department of Materials, University of Oxford, Oxford OX1 3PH, UK Department of Materials, Imperial College London, London SW7 2AZ, UK
Frederick Meisenkothen
Affiliation:
Materials Measurement Science Division, National Institute of Standards and Technology, Gaithersburg, MD 20889, USA
Jaspreet Singh
Affiliation:
Department of Materials, University of Oxford, Oxford OX1 3PH, UK
Andrew J. London
Affiliation:
Department of Materials, University of Oxford, Oxford OX1 3PH, UK UK Atomic Energy Authority, Culham Science Center, Oxfordshire OX14 3DB, UK
Michael P. Moody
Affiliation:
Department of Materials, University of Oxford, Oxford OX1 3PH, UK
*
*Corresponding author: Phillip Gopon, E-mail: phillip.gopon@unileoben.ac.at
Get access

Abstract

Using a combination of simulated data and pyrite isotopic reference materials, we have refined a methodology to obtain quantitative δ34S measurements from atom probe tomography (APT) datasets. This study builds on previous attempts to characterize relative 34S/32S ratios in gold-containing pyrite using APT. We have also improved our understanding of the artifacts inherent in laser-pulsed APT of insulators. Specifically, we find the probability of multi-hit detection events increases during the APT experiment, which can have a detrimental effect on the accuracy of the analysis. We demonstrate the use of standardized corrected time-of-flight single-hit data for our isotopic analysis. Additionally, we identify issues with the standard methods of extracting background-corrected counts from APT mass spectra. These lead to inaccurate and inconsistent isotopic analyses due to human variability in peak ranging and issues with background correction algorithms. In this study, we use the corrected time-of-flight single-hit data, an adaptive peak fitting algorithm, and an improved deconvolution algorithm to extract 34S/32S ratios from the S2+ peaks. By analyzing against a standard material, acquired under similar conditions, we have extracted δ34S values to within ±5‰ (1‰ = 1 part per thousand) of the published values of our standards.

Type
Development and Computation
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of the Microscopy Society of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bachhav, M, Gan, J, Keiser, D, Giglio, J, Jädernäs, D, Leenaers, A & Van den Berghe, S (2020). A novel approach to determine the local burnup in irradiated fuels using atom probe tomography (APT). J Nucl Mater 528. doi:10.1016/j.jnucmat.2019.151853CrossRefGoogle Scholar
Blum, TB, Reinhard, DA, Chen, Y, Prosa, TJ, Larson, DJ & Valley, JW (2018). Uncertainty and sensitivity analysis for spatial and spectral processing of Pb isotopes in zircon by atom probe tomography. In Microstructural Geochronology: Planetary Records Down to Atom Scale, Geophysical Monograph 232, First Edition, Moser, DE, Corfu, F, Darling, JR, Reddy, SM & Tait, K (Eds.), pp. 327350. John Wiley & Sons, Inc. doi:10.1002/9781119227250.Google Scholar
Boucher, FRGFGB (2018). Population-wide garnet growth zoning revealed by LA-ICP-MS mapping: Implications for trace element equilibration and syn-kinematic deformation during crystallisation. Contrib Mineral Petrol 173, 122. doi:10.1007/s00410-018-1503-0Google Scholar
Bunton, J, Lenz, D, Olson, J, Thompson, K, Ulfig, R, Larson, D & Kelly, T (2006). Instrumentation developments in atom probe tomography: Applications in semiconductor research. Microsc Microanal 12, 17301731.CrossRefGoogle Scholar
Byrd, RH, Lu, P, Nocedal, J & Zhu, C (1995). A limited memory algorithm for bound constrained optimization. SIAM J Sci Comput 16, 11901208.CrossRefGoogle Scholar
Cairney, JM, Rajan, K, Haley, D, Gault, B, Bagot, PAJ, Choi, PP, Felfer, PJ, Ringer, SP, Marceau, RKW & Moody, MP (2015). Mining information from atom probe data. Ultramicroscopy 159, 324337. doi:10.1016/j.ultramic.2015.05.006CrossRefGoogle ScholarPubMed
Cartwright, I & Valley, JW (1991). Low-18O Scourie dike magmas from the Lewisian complex, northwestern Scotland. Geology 19, 578581. doi:10.1130/0091-7613(1991)019<0578:LOSDMF>2.3.CO;22.3.CO;2>CrossRefGoogle Scholar
Chen, YM, Ohkubo, T, Kodzuka, M, Morita, K & Hono, K (2009). Laser-assisted atom probe analysis of zirconia/spinel nanocomposite ceramics. Scr Mater 61, 693696. doi:10.1016/j.scriptamat.2009.05.043CrossRefGoogle Scholar
Chiaramonti, AN, Miaja-Avila, L, Blanchard, PT, Diercks, DR, Gorman, BP & Sanford, NA (2019). A three-dimensional atom probe microscope incorporating a wavelength-tuneable femtosecond-pulsed coherent extreme ultraviolet light source. MRS Adv 4, 23672375. doi:10.1557/adv.2019.296CrossRefGoogle Scholar
Coplen, TB (1993). Reporting of stable carbon, hydrogen, and oxygen isotopic abundances. In Proceedings of the Fifth IAEA Meeting on Stable Isotope Standards and Intercomparison Materials, Staff of the IAEA (Ed.), pp. 31–34. Vienna, AT: International Atomic Energy Authority.Google Scholar
Crowe, DE & Vaughan, RG (1996). Characterization and use of isotopically homogeneous standards for in situ laser microprobe analysis of 34 S/ 32 S ratios. Am Mineral 81, 187193. doi:10.2138/am-1996-1-223CrossRefGoogle Scholar
Daly, L, et al. (2018). Defining the potential of nanoscale Re-Os isotope systematics using atom probe microscopy. Geostand Geoanalytical Res, 12. doi:10.1111/ggr.12216.Google Scholar
De Laeter, JR, Böhlke, JK, De Bièvre, P, Hidaka, H, Peiser, HS, Rosman, KJR & Taylor, PDP (2003). Atomic weights of the elements: Review 2000 (IUPAC technical report). Pure Appl Chem 75, 683800. doi:10.1351/pac200375060683CrossRefGoogle Scholar
Exertier, F, et al. (2018). Atom probe tomography analysis of the reference zircon gj-1: An interlaboratory study. Chem Geol, 124. doi: 10.1016/j.chemgeo.2018.07.031.Google Scholar
Fougerouse, D, Kirkland, C, Saxey, D, Seydoux-Guillaume, A-M, Rowles, MR, Rickard, WDA & Reddy, SM (2020). Nanoscale isotopic dating of monazite. Geostand Geoanaly Res 44, 637652. doi:10.1111/ggr.12340CrossRefGoogle Scholar
Fougerouse, D, Reddy, SM, Kirkland, CL, Saxey, DW, Rickard, WD & Hough, RM (2018). Time-resolved, defect-hosted, trace element mobility in deformed Witwatersrand pyrite. Geosci Front 10, 5563. doi:10.1016/j.gsf.2018.03.010CrossRefGoogle Scholar
Gault, B, Moody, MP, Cairney, JM & Ringer, SP (2012). In Atom Probe Microscopy, Hull, ZM, Jagadish, R, Osgood, C Jr., Parisi, RM & Wang, J (Eds.), vol. 44, p. 411. New York. doi:10.1017/CBO9781107415324.004.CrossRefGoogle Scholar
Gopon, P, Douglas, JO, Auger, MA, Hansen, L, Wade, J, Cline, JS, Robb, LJ & Moody, MP (2019). A nanoscale investigation of carlin-type gold deposits: An atom-scale elemental and isotopic perspective. Econ Geol 114, 11231133. doi:10.5382/econgeo.4676CrossRefGoogle Scholar
Gopon, P, Singh, J, London, A, Hansen, L, Wade, J & Moody, M (2020). Extraction of S isotopes from geologic datasets. In Proceedings of the Field Emission Society Special APT Software Meeting, p. 1. https://youtu.be/Cqi8_aurYrw.Google Scholar
Haase, CS, Chadman, J, Feinn, D & Ortoleva, P (1980). Oscillatory zoning in plagioclase feldspar. Science 209, 272274. doi:10.1126/science.209.4453.272CrossRefGoogle ScholarPubMed
Haley, D, Choi, P & Raabe, D (2015). Guided mass spectrum labelling in atom probe tomography. Ultramicroscopy 159(Pt 2), 338345. doi:10.1016/j.ultramic.2015.03.005CrossRefGoogle ScholarPubMed
Halliday, AN & Lee, DC (1999). Tungsten isotopes and the early development of the earth and moon. Geochim Cosmochim Acta 63, 41574179. doi:10.1016/s0016-7037(99)00315-4CrossRefGoogle Scholar
Hauri, EH, Papineau, D, Wang, J & Hillion, F (2016). High-precision analysis of multiple sulfur isotopes using NanoSIMS. Chem Geol 420, 148161. doi:10.1016/j.chemgeo.2015.11.013CrossRefGoogle Scholar
Haycock, R & Kingham, DR (1980). Post-ionization of field-evaporated ions. Phys Rev Lett 44, 15201523.Google Scholar
Hervig, RL, Mazdab, FK, Williams, P, Guan, Y, Huss, GR & Leshin, LA (2006). Useful ion yields for cameca IMS 3f and 6f SIMS: Limits on quantitative analysis. Chem Geol 227, 8399. doi:10.1016/j.chemgeo.2005.09.008CrossRefGoogle Scholar
Jensen, ML & Nakai, N (1962). Sulfur isotope meteorite standards results and recommendations. In Biochemistry of Sulfur Isotopes, Jensen, ML (Ed.), pp. 3035. NSF Symposium.Google Scholar
Kautz, E, Cliff, J, Lach, T, Reilly, D & Devaraj, A (2021). Correlating nanoscale secondary ion mass spectrometry and atom probe tomography analysis of uranium enrichment in metallic nuclear fuel. Analyst 146, 6974. doi:10.1039/d0an01831gCrossRefGoogle ScholarPubMed
Kelly, TF (2020). Project tomo: In pursuit of atomic-scale analytical tomography. In Proceedings of the Atom Probe Tomography and Microscopy Conference, p. 1.Google Scholar
Larson, DJ, Prosa, TJ, Ulfig, RM, Geiser, BP & Kelly, TF (1999). Local Electrode Atom Probe Tomography: A User's Guide. New York: Springer. 328 p., doi:10.1007/978-1-4614-8721-0.Google Scholar
London, AJ (2019). Quantifying uncertainty from mass-peak overlaps in atom probe microscopy. Microscopy and Microanalysis 111. doi:10.1017/S1431927618016276Google ScholarPubMed
McKeegan, KD & Leshinv, LA (2001). Stable isotope variations in extraterrestrial materials. In Reviews in Mineralogy and Geochemistry, Valley, JW & Cole, DR (Eds.), vol. 43, chapter 4, pp. 279318. Stable Isotope Geochemistry.Google Scholar
Meija, J, et al. (2016). Isotopic compositions of the elements 2013 (IUPAC technical report). Pure Appl Chem 88, 293306. doi:10.1515/pac-2015-0503CrossRefGoogle Scholar
Meisenkothen, F, McLean, M, Kalish, I, Samarov, D & Steel, E (2020b). Towards accurate and reproducible uranium isotopic analysis via atom probe mass spectrometry. Microsc Microanal 26, 176177. doi:10.1017/s1431927620013689CrossRefGoogle Scholar
Meisenkothen, F, Mclean, M, Kalish, I, Samarov, DV & Steel, EB (2020a). Atom probe mass spectrometry of uranium isotopic reference materials. Anal Chem 92, 1138811395. doi:10.1021/acs.analchem.0c02273CrossRefGoogle Scholar
Meisenkothen, F, Samarov, DV, Kalish, I & Steel, EB (2020c). Exploring the accuracy of isotopic analyses in atom probe mass spectrometry: Ultramicroscopy, 216, p. 113018, doi:10.1016/j.ultramic.2020.113018.CrossRefGoogle Scholar
Meisenkothen, F, Steel, EB, Prosa, TJ, Henry, KT & Prakash Kolli, R (2015). Effects of detector dead-time on quantitative analyses involving boron and multi-hit detection events in atom probe tomography. Ultramicroscopy 159, 101111. doi:10.1016/j.ultramic.2015.07.009CrossRefGoogle ScholarPubMed
Nesse, W (2000). Introduction to Mineralogy. New York: Oxford Univerity Press. 442 p.Google Scholar
Peterman, EM, Reddy, SM, Saxey, DW, Snoeyenbos, DR, Rickard, WDA, Fougerouse, D & Kylander-clark, ARC (2016). Nanogeochronology of discordant zircon measured by atom probe microscopy of Pb-enriched dislocation loops. Sci Adv 2, 19. doi:10.1126/sciadv.1601318CrossRefGoogle ScholarPubMed
Prosa, TJ & Oltman, E (2021). Study of LEAP 5000 deadtime and precision via silicon pre-sharpened-microtip standard specimens. Microsc Microanal, pp. 1.Google Scholar
Prosa, TJ, Reinhard, DA, Saint-Cyr, HF, Martin, I, Rice, KP, Yimeng, C & Larson, DJ (2017). Evolution of atom probe data collection toward optimized and fully automated acquisition. Microsc Microanal 23(S1), 616617.CrossRefGoogle Scholar
Saxey, DW (2011). Correlated ion analysis and the interpretation of atom probe mass spectra. Ultramicroscopy 111, 473479. doi:10.1016/j.ultramic.2010.11.021CrossRefGoogle ScholarPubMed
Schertl, H-P, Maresch, WV, Stanek, KP, Hertwig, A, Krebs, M, Baese, R & Sergeev, SS (2012). New occurrences of jadeitite, jadeite quartzite and jadeite-lawsonite quartzite in the Dominican Republic, Hispaniola: Petrological and geochronological overview. Eur J Mineral 24, 199216. doi:10.1127/0935-1221/2012/0024-2201CrossRefGoogle Scholar
Seydoux-Guillaume, A-M, Fougerouse, D, Laurent, A-T, Gardés, E, Reddy, SM & Saxey, DW (2018). Nanoscale resetting of the Th/Pb system in an isotopically-closed monazite grain: A combined atom probe and transmission electron microscopy study. Geosci Front. doi:10.1016/j.gsf.2018.09.004.Google Scholar
Spero, HJ, Bijma, J, Lea, DW & Bernis, BE (1997). Effect of seawater carbonate concentration on foraminiferal carbon and oxygen isotopes. Nature 390, 497500. doi:10.1038/37333CrossRefGoogle Scholar
Tanner, D, Henley, RW, Mavrogenes, JA & Holden, P (2016). Sulfur isotope and trace element systematics of zoned pyrite crystals from the El indio Au–Cu–Ag deposit, Chile. Contrib Mineral Petrol 171, 117. doi:10.1007/s00410-016-1248-6CrossRefGoogle Scholar
Thompson, K, Lawrence, D, Larson, DJ, Olson, JD, Kelly, TF & Gorman, B (2007). In situ site-specific specimen preparation for atom probe tomography. Ultramicroscopy 107, 131139. doi:10.1016/j.ultramic.2006.06.008CrossRefGoogle ScholarPubMed
Thuvander, M, Shinde, D, Rehan, A, Ejnermark, S & Stiller, K (2019). Improving compositional accuracy in APT analysis of carbides using a decreased detection efficiency. Microsc Microanal 25, 454461. doi:10.1017/S1431927619000424CrossRefGoogle ScholarPubMed
Thuvander, M, Weidow, J, Angseryd, J, Falk, LKL, Liu, F, Sonestedt, M, Stiller, K & Andrén, HO (2011). Quantitative atom probe analysis of carbides. Ultramicroscopy 111, 604608. doi:10.1016/j.ultramic.2010.12.024CrossRefGoogle ScholarPubMed
Valley, JW, et al. (2014). Hadean age for a post-magma-ocean zircon confirmed by atom-probe tomography. Nature Geosci 7, 219223. doi:10.1038/ngeo2075CrossRefGoogle Scholar
Valley, JW, Reinhard, DA, Cavosie, AJ, Ushikubo, T, Lawrence, DF, Larson, DJ, Kelly, TF, Snoeyenbos, DR & Strickland, A (2015). Presidential address. Nano-and micro-geochronology in hadean and archean zircons by atom-probe tomography and SIMS: New tools for old minerals. Am Mineral 100, 13551377. doi:10.2138/am-2015-5134CrossRefGoogle Scholar
Walters, JB, Cruz-Uribe, AM & Marschall, HR (2019). Isotopic compositions of sulfides in exhumed high-pressure terranes: Implications for sulfur cycling in subduction zones. Geochem Geophy Geosyst. doi:10.1029/2019GC008374.CrossRefGoogle Scholar
Supplementary material: File

Gopon et al. supplementary material

Gopon et al. supplementary material 1
Download Gopon et al. supplementary material(File)
File 1.4 MB
Supplementary material: File

Gopon et al. supplementary material

Gopon et al. supplementary material 2

Download Gopon et al. supplementary material(File)
File 13.2 KB
Supplementary material: PDF

Gopon et al. supplementary material

Gopon et al. supplementary material 3

Download Gopon et al. supplementary material(PDF)
PDF 865.8 KB
Supplementary material: File

Gopon et al. supplementary material

Gopon et al. supplementary material 4

Download Gopon et al. supplementary material(File)
File 21.6 KB
Supplementary material: File

Gopon et al. supplementary material

Gopon et al. supplementary material 5

Download Gopon et al. supplementary material(File)
File 22 KB