Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-07-03T17:26:32.510Z Has data issue: false hasContentIssue false

Behavior of the ε-Ga2O3:Sn Evaporation During Laser-Assisted Atom Probe Tomography

Published online by Cambridge University Press:  25 June 2021

Florian Chabanais
Affiliation:
UNIROUEN, CNRS, Groupe de Physique des Matériaux, Normandie Université, 76000Rouen, France
Enrico Di Russo
Affiliation:
UNIROUEN, CNRS, Groupe de Physique des Matériaux, Normandie Université, 76000Rouen, France
Alexander Karg
Affiliation:
Institute of Solid State Physics, University of Bremen, Bremen, Germany
Martin Eickhoff
Affiliation:
Institute of Solid State Physics, University of Bremen, Bremen, Germany
Williams Lefebvre
Affiliation:
UNIROUEN, CNRS, Groupe de Physique des Matériaux, Normandie Université, 76000Rouen, France
Lorenzo Rigutti*
Affiliation:
UNIROUEN, CNRS, Groupe de Physique des Matériaux, Normandie Université, 76000Rouen, France
*
*Author for correspondence: Lorenzo Rigutti, E-mail: lorenzo.rigutti@univ-rouen.fr
Get access

Abstract

The measurement of the composition of ε-Ga2O3 and the quantification of Sn doping in ε-Ga2O3:Sn by laser-assisted atom probe tomography (APT) may be inaccurate depending on the experimental conditions. Both the role of the laser energy and surface electric field were investigated, and the results clearly indicate that deviations from stoichiometry are observed changing the electric field conditions during APT. The measured atomic fraction of Ga can change from 0.45 at low field to 0.38 at high field, to be compared with the expected 0.4. This was interpreted in terms of preferential evaporation of Ga at high field and deficit of O at low field, which was caused by the formation of neutrals. The quantification of Sn-doping is accurate at low-field conditions, with an overestimation of the detected Sn-metallic fraction at high field. This suggests that Sn has a higher evaporation field compared to Ga. Finally, multiple detection events were in-depth studied, revealing that three dissociation reactions occur during APT: GaO2+ → Ga+ + O+; Ga2O22+ → Ga+ + GaO2+; Ga3O22+ → Ga+ + Ga2O2+. Nevertheless, only 2% of the detected events are related to such dissociation reactions, too small a fraction to fully explain the observed deviation from the stoichiometric composition in ε-Ga2O3.

Type
Materials Science Applications
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of the Microscopy Society of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Both authors contributed equally to this work.

References

Amichi, L, Mouton, I, Di Russo, E, Boureau, V, Barbier, F, Dussaigne, A, Jouneau, P-H, Bougerol, C & Cooper, D (2020). Three-dimensional measurement of Mg dopant distribution and electrical activity in GaN by correlative atom probe tomography and off-axis electron holography. J Appl Phys 127, 065702.CrossRefGoogle Scholar
Amirifar, N, Lardé, R, Talbot, E, Pareige, P, Rigutti, L, Mancini, L, Houard, J, Castro, C, Sallet, V, Zehani, E, Hassani, S, Sartel, C, Ziani, A & Portier, X (2015). Quantitative analysis of doped/undoped ZnO nanomaterials using laser assisted atom probe tomography: Influence of the analysis parameters. J Appl Phys 118, 215703.CrossRefGoogle Scholar
Arnoldi, L, Silaeva, EP, Gaillard, A, Vurpillot, F, Blum, I, Rigutti, L, Deconihout, B & Vella, A (2014). Energy deficit of pulsed-laser field-ionized and field-emitted ions from non-metallic nano-tips. J Appl Phys 115, 203705.CrossRefGoogle Scholar
Blum, I, Rigutti, L, Vurpillot, F, Vella, A, Gaillard, A & Deconihout, B (2016). Dissociation dynamics of molecular ions in high dc electric field. J Phys Chem A 120, 36543662.CrossRefGoogle ScholarPubMed
Bogdanowicz, J, Kumar, A, Fleischmann, C, Gilbert, M, Houard, J, Vella, A & Vandervorst, W (2018). Laser-assisted atom probe tomography of semiconductors: The impact of the focused-ion beam specimen preparation. Ultramicroscopy 188, 19.CrossRefGoogle ScholarPubMed
Bonef, B, Cramer, R & Speck, JS (2017). Nanometer scale composition study of MBE grown BGan performed by atom probe tomography. J Appl Phys 121, 225701.CrossRefGoogle Scholar
Bosi, M, Mazzolini, P, Seravalli, L & Fornari, R (2020). Ga2O3 polymorphs: Tailoring the epitaxial growth conditions. J Mater Chem C 8, 10975.CrossRefGoogle Scholar
Bougerol, C, Robin, E, Russo, ED, Bellet-Amalric, E, Grenier, V, Ajay, A, Rigutti, L & Monroy, E (2021). Solubility limit of Ge dopants in AlGaN: A chemical and microstructural investigation down to the nanoscale. Appl Mater Interfaces 13, 4165.CrossRefGoogle ScholarPubMed
Chiaramonti, AN, Miaja-Avila, L, Caplins, BW, Blanchard, PT, Diercks, DR, Gorman, BP & Sanford, NA (2020). Field Ion emission in an atom probe microscope triggered by femtosecond-pulsed coherent extreme ultraviolet light. Microsc Microanal 26, 258.CrossRefGoogle Scholar
Cuduvally, R, Morris, RJH, Ferrari, P, Bogdanowicz, J, Fleischmann, C, Melkonyan, D & Vandervorst, W (2020). Potential sources of compositional inaccuracy in the atom probe tomography of InxGa1-xAs. Ultramicroscopy 210, 112918.CrossRefGoogle Scholar
Da Costa, G, Vurpillot, F, Bostel, A, Bouet, M & Deconihout, B (2005). Design of a delay-line position-sensitive detector with improved performance. Rev Sci Instrum 76, 013304.CrossRefGoogle Scholar
Da Costa, G, Wang, H, Duguay, S, Bostel, A, Blavette, D & Deconihout, B (2012). Advance in multi-hit detection and quantization in atom probe tomography. Rev Sci Instrum 83, 123709.CrossRefGoogle ScholarPubMed
Dimkou, I, Di Russo, E, Dalapati, P, Houard, J, Rochat, N, Cooper, D, Bellet-Amarlic, E, Grenier, A, Monroy, E & Rigutti, L (2020). InGaN quantum dots studied by correlative microscopy techniques for enhanced light-emitting diodes. Appl Nano Mater 3(10), 1013310143.CrossRefGoogle Scholar
Di Russo, E (2017). Study of the physical mechanisms leading to compositional biases in atom probe tomography of semiconductors. PhD Thesis.Google Scholar
Di Russo, E, Blum, I, Houard, J, Costa, GD, Blavette, D & Rigutti, L (2017 a). Field-Dependent measurement of GaAs composition by atom probe tomography. Microsc Microanal 23, 10671075.CrossRefGoogle ScholarPubMed
Di Russo, E, Blum, I, Houard, J, Gilbert, M, Da Costa, G, Blavette, D & Rigutti, L (2018 a). Compositional accuracy of atom probe tomography measurements in GaN: Impact of experimental parameters and multiple evaporation events. Ultramicroscopy 187, 126134.CrossRefGoogle Scholar
Di Russo, E, Blum, I, Rivalta, I, Houard, J, Costa, GD, Blavette, D & Rigutti, L (2020 a). Phosphorus cation dissociation in laser-assisted atom probe tomography of indium phosphide. J Phys Chem C 124, 10977.CrossRefGoogle Scholar
Di Russo, E, Cherkashin, N, Koritow, M, Nikolaev, AE, Sakharov, AV, Tsatsulnikov, AF, Bonef, B, Blum, I, Houard, J, Da Costa, G, Blavette, D & Rigutti, L (2019). Compositional accuracy in atom probe tomography analyses performed on III-N light emitting diodes. J Appl Phys 126, 124307.CrossRefGoogle Scholar
Di Russo, E, Mancini, L, Moyon, F, Moldovan, S, Houard, J, Julien, FH, Tchernycheva, M, Chauveau, JM, Hugues, M, Da Costa, G, Blum, I, Lefebvre, W, Blavette, D & Rigutti, L (2017 b). Three-dimensional atomic-scale investigation of ZnO-MgxZn1−xO m-plane heterostructures. Appl Phys Lett 111, 032108.CrossRefGoogle Scholar
Di Russo, E, Mavel, A, Fan Arcara, V, Damilano, B, Dimkou, I, Vézian, S, Grenier, A, Veillerot, M, Rochat, N, Feuillet, G, Bonef, B, Rigutti, L, Duboz, J-Y, Monroy, E & Cooper, D (2020 b). Multi-microscopy nanoscale characterization of the doping profile in a hybrid Mg/Ge-doped tunnel junction. Nanotechnology 31, 465706.CrossRefGoogle Scholar
Di Russo, E, Moyon, F, Gogneau, N, Largeau, L, Giraud, E, Carlin, J-F, Grandjean, N, Chauveau, JM, Hugues, M, Blum, I, Lefebvre, W, Vurpillot, F, Blavette, D & Rigutti, L (2018 b). Composition metrology of ternary semiconductor alloys analyzed by atom probe tomography. J Phys Chem C 122, 1670416714.CrossRefGoogle Scholar
Dong, L, Jia, R, Xin, B, Peng, B & Zhang, Y (2017). Effects of oxygen vacancies on the structural and optical properties of β-Ga2O3. Sci Rep 7, 40160.CrossRefGoogle ScholarPubMed
Dumas, P, Duguay, S, Borrel, J, Gauthier, A, Ghegin, E & Blavette, D (2019). 3D atomic-scale investigation of carbon segregation in phosphorus co-implanted silicon. Appl Phys Lett 115, 132103.CrossRefGoogle Scholar
Dumas, P, Duguay, S, Borrel, J, Hilario, F & Blavette, D (2021). Atom probe tomography quantification of carbon in silicon. Ultramicroscopy 220, 113153.CrossRefGoogle ScholarPubMed
Gault, B, Saxey, DW, Ashton, MW, Sinnott, SB, Chiaramonti, AN, Moody, MP & Schreiber, DK (2016). Behavior of molecules and molecular ions near a field emitter. New J Phys 18, 033031.CrossRefGoogle Scholar
Grenier, A, Duguay, S, Barnes, JP, Serra, R, Haberfehlner, G, Cooper, D, Bertin, F, Barraud, S, Audoit, G, Arnoldi, L, Cadel, E, Chabli, A & Vurpillot, F (2014). 3D analysis of advanced nano-devices using electron and atom probe tomography. Ultramicroscopy 136, 185192.CrossRefGoogle ScholarPubMed
Higashiwaki, M, Sasaki, K, Kuramata, A, Masui, T & Yamakoshi, S (2014). Development of gallium oxide power devices. Phys Status Solidi (A) 211, 2126.CrossRefGoogle Scholar
Higashiwaki, M, Sasaki, K, Murakami, H, Kumagai, Y, Koukitu, A, Kuramata, A, Masui, T & Yamakoshi, S (2016). Recent progress in Ga2O3 power devices. Semicond Sci Technol 31, 034001.CrossRefGoogle Scholar
Jaroń-Becker, A, Becker, A & Faisal, FHM (2004). Ionization of N2, O2, and linear carbon clusters in a strong laser pulse. Phys Rev A 69, 023410.CrossRefGoogle Scholar
Ji, Z, Du, J, Fan, J & Wang, W (2006). Gallium oxide films for filter and solar-blind UV detector. Opt Mater 28, 415417.CrossRefGoogle Scholar
Kingham, DR (1982). The post-ionization of field evaporated ions: A theoretical explanation of multiple charge states. Surf Sci 116, 273301.CrossRefGoogle Scholar
Kracht, M, Karg, A, Schörmann, J, Weinhold, M, Zink, D, Michel, F, Rohnke, M, Schowalter, M, Gerken, B, Rosenauer, A, Klar, PJ, Janek, J & Eickhoff, M (2017). Tin-assisted synthesis of ε-Ga2O3 by molecular beam epitaxy. Phys Rev Appl 8, 054002.CrossRefGoogle Scholar
Mancini, L, Amirifar, N, Shinde, D, Blum, I, Gilbert, M, Vella, A, Vurpillot, F, Lefebvre, W, Lardé, R, Talbot, E, Pareige, P, Portier, X, Ziani, A, Davesnne, C, Durand, C, Eymery, J, Butté, R, Carlin, J-F, Grandjean, N & Rigutti, L (2014). Composition of wide bandgap semiconductor materials and nanostructures measured by atom probe tomography and Its dependence on the surface electric field. J Phys Chem C 118, 2413624151.CrossRefGoogle Scholar
Müller, M, Saxey, DW, Smith, GDW & Gault, B (2011). Some aspects of the field evaporation behaviour of GaSb. Ultramicroscopy 111, 487492.CrossRefGoogle ScholarPubMed
Oshima, Y, Ahmadi, E, Badescu, SC, Wu, F & Speck, JS (2016). Composition determination of β-(AlxGa1−x)2O3 layers coherently grown on (010) β-Ga2O3 substrates by high-resolution X-ray diffraction. Appl Phys Express 9, 061102.CrossRefGoogle Scholar
Padalkar, S, Riley, JR, Li, Q, Wang, GT & Lauhon, LJ (2014). Lift-out procedures for atom probe tomography targeting nanoscale features in core-shell nanowire heterostructures. Phys Status Solidi C 11, 656661.CrossRefGoogle Scholar
Rigutti, L, Mancini, L, Hernández-Maldonado, D, Lefebvre, W, Giraud, E, Butté, R, Carlin, JF, Grandjean, N, Blavette, D & Vurpillot, F (2016). Statistical correction of atom probe tomography data of semiconductor alloys combined with optical spectroscopy: The case of Al0.25Ga0.75N. J Appl Phys 119, 105704.CrossRefGoogle Scholar
Roy, R, Hill, VG & Osborn, EF (1952). Polymorphism of Ga2O3 and the system Ga2O3—H2O. J Am Chem Soc 74, 719722.CrossRefGoogle Scholar
Saxey, DW (2011). Correlated ion analysis and the interpretation of atom probe mass spectra. Ultramicroscopy 111, 473479.CrossRefGoogle ScholarPubMed
Swinnich, E, Hasan, MN, Zeng, K, Dove, Y, Singisetti, U, Mazumder, B & Seo, J-H (2019). Flexible β-Ga2O3 nanomembrane schottky barrier diodes. Adv Electron Mater 5, 1800714.CrossRefGoogle Scholar
Thompson, K, Lawrence, D, Larson, DJ, Olson, JD, Kelly, TF & Gorman, B (2007). In situ site-specific specimen preparation for atom probe tomography. Ultramicroscopy 107, 131139.CrossRefGoogle ScholarPubMed
Tsong, TT & Liou, Y (1985). Cluster-ion formation in pulsed-laser-stimulated field desorption of condensed materials. Phys Rev B 32, 4340.CrossRefGoogle ScholarPubMed
Vaidya, A, Sarker, J, Zhang, Y, Lubecki, L, Wallace, J, Poplawsky, JD, Sasaki, K, Kuramata, A, Goyal, A, Gardella, JA, Mazumder, B & Singisetti, U (2019). Structural, band and electrical characterization of β-(Al0.19Ga0.81)2O3 films grown by molecular beam epitaxy on Sn doped β-Ga2O3 substrate. J Appl Phys 126, 095702.CrossRefGoogle Scholar
Xia, Y, Karahka, M & Kreuzer, HJ (2015). Field evaporation of ZnO: A first-principles study. J Appl Phys 118, 025901.Google Scholar
Zanuttini, D, Blum, I, di Russo, E, Rigutti, L, Vurpillot, F, Douady, J, Jacquet, E, Anglade, P-M & Gervais, B (2018). Dissociation of GaN2+ and AlN2+ in APT: Analysis of experimental measurements. J Chem Phys 149, 134311.CrossRefGoogle ScholarPubMed
Zanuttini, D, Blum, I, Rigutti, L, Vurpillot, F, Douady, J, Jacquet, E, Anglade, P-M & Gervais, B (2017). Simulation of field-induced molecular dissociation in atom-probe tomography: Identification of a neutral emission channel. Phys Rev A 95, 061401.CrossRefGoogle Scholar
Zhang, J, Shi, J, Qi, D-C, Chen, L & Zhang, KHL (2020). Recent progress on the electronic structure, defect, and doping properties of Ga2O3. APL Mater 8, 020906.CrossRefGoogle Scholar