Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-24T15:36:45.902Z Has data issue: false hasContentIssue false

Comparing the Consistency of Atom Probe Tomography Measurements of Small-Scale Segregation and Clustering Between the LEAP 3000 and LEAP 5000 Instruments

Published online by Cambridge University Press:  26 April 2017

Tomas L. Martin*
Affiliation:
Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH, UK
Andrew J. London
Affiliation:
Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH, UK
Benjamin Jenkins
Affiliation:
Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH, UK
Sarah E. Hopkin
Affiliation:
Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH, UK
James O. Douglas
Affiliation:
Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH, UK
Paul D. Styman
Affiliation:
National Nuclear Laboratory, Building D5, Culham Science Centre, Abingdon, Oxfordshire, OX14 3DB, UK
Paul A. J. Bagot
Affiliation:
Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH, UK
Michael P. Moody
Affiliation:
Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH, UK
*
*Corresponding author.tomas.martin@materials.ox.ac.uk
Get access

Abstract

The local electrode atom probe (LEAP) has become the primary instrument used for atom probe tomography measurements. Recent advances in detector and laser design, together with updated hit detection algorithms, have been incorporated into the latest LEAP 5000 instrument, but the implications of these changes on measurements, particularly the size and chemistry of small clusters and elemental segregations, have not been explored. In this study, we compare data sets from a variety of materials with small-scale chemical heterogeneity using both a LEAP 3000 instrument with 37% detector efficiency and a 532-nm green laser and a new LEAP 5000 instrument with a manufacturer estimated increase to 52% detector efficiency, and a 355-nm ultraviolet laser. In general, it was found that the number of atoms within small clusters or surface segregation increased in the LEAP 5000, as would be expected by the reported increase in detector efficiency from the LEAP 3000 architecture, but subtle differences in chemistry were observed which are attributed to changes in the way multiple hit detection is calculated using the LEAP 5000.

Type
Hardware
Copyright
© Microscopy Society of America 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amouyal, Y. & Seidman, D.N. (2012). Atom-probe tomography of nickel-based superalloys with green or ultraviolet lasers: A comparative study. Microsc Microanal 18(5), 971981.Google Scholar
Bostel, A., Blavette, D., Menand, A. & Sarrau, J.M. (1989). Toward a tomographic atom-probe. Colloq Phys 50(C8), 501506.Google Scholar
Bunton, J.H., Olsen, J.D., Lenz, D.R. & Kelly, T.F. (2007). Advances in pulsed-laser atom probe: Instrument and specimen design for optimum performance. Microsc Microanal 13, 418427.Google Scholar
Cerezo, A., Godfrey, T.J. & Smith, G.D.W. (1988). Application of a position-sensitive detector to atom probe microanalysis. Rev Sci Instrum 59(6), 862866.Google Scholar
Cerezo, A., Smith, G.D.W. & Waugh, A.R. (1984). The FIM100 – Performance of a commercial atom probe system. J Phys Colloq 45, C9-329C9-335.Google Scholar
Donkelaar, J.V., Yang, C., Alves, A.D.C., Mccallum, J.C., Hougaard, C., Johnson, B.C., Hudson, F.E., Dzurak, A.S., Morello, A. & Spemann, D. (2015). Single atom devices by ion implantation. J Phys Condens Matter 27, 154204.Google Scholar
Douglas, J.O., Bagot, P.A.J., Johnson, B.C., Jamieson, D.N. & Moody, M.P. (2016). Optimisation of sample preparation and analysis conditions for atom probe tomography characterisation of low concentration surface species. J Semicond Sci Technol 31, 084004.Google Scholar
Fuechsle, M., Miwa, J.A., Mahapatra, S., Ryu, H., Lee, S., Warschkow, O., Hollenberg, L.C.L., Klimeck, G. & Simmons, M.Y. (2012). A single-atom transistor. Nat Nanotechnol 7(4), 242246.CrossRefGoogle ScholarPubMed
Gault, B., Moody, M.P., Cairney, J.M. & Ringer, S.P. (2012). Atom Probe Microscopy, Springer Series in Materials Science, 160. New York: Springer.CrossRefGoogle Scholar
Gordon, L.M., Tran, L. & Joester, D. (2012). Atom probe tomography of apatites and bone-type mineralized tissues. ACS Nano 6(12), 1066710675.Google Scholar
Hyde, J.M., Marquis, E.A., Wilford, K.B. & Williams, T.J. (2011). A sensitivity analysis of the maximum separation method for the characterisation of solute clusters. Ultramicroscopy 11(6), 440447.Google Scholar
Inoue, K., Yano, A., Nishida, A., Takamizawa, H., Tsunomura, T., Nagai, Y. & Hasegawa, M. (2009). Dopant distributions in n-MOSFET structure observed by atom probe tomography. Ultramicroscopy 109(12), 14791484.Google Scholar
Jagutzki, O., Cerezo, A., Czasch, A., Dörner, R., Hattaß, M., Huang, M., Mergel, V., Spillmann, U., Ullmann-Pfleger, K., Weber, T., Schmidt-Böcking, H. & Smith, G.D.W. (2002). Multiple hit readout of a microchannel plate detector with a three-layer delay-line anode. IEEE Trans Nucl Sci 49, 24772483.Google Scholar
Kane, B.E. (1998). A silicon-based nuclear spin quantum computer. Nature 393, 133137.Google Scholar
Kelly, T.F., Camus, P.P., Larson, D.J., Holzman, L.M. & Bajikar, S.S. (1996). On the many advantages of local-electrode atom probes. Ultramicroscopy 62, 2942.CrossRefGoogle ScholarPubMed
Kelly, T.F. & Larson, D.J. (2000). Local electrode atom probes. Mater Charact 44(1-2), 5985.Google Scholar
Kinno, T., Akutsu, H., Tomita, M., Kawanaka, S., Sonehara, T., Hokazono, A., Renaud, L., Martin, I., Benbalagh, R., Salle, B. & Takeno, S. (2012). Influence of multi-hit capability on quantitative measurement of NiPtSi thin film with laser-assisted atom probe tomography. Appl Surf Sci 259, 726730.Google Scholar
Larson, D.J., Prosa, T.J., Ulfig, R.M., Geiser, B.P. & Kelly, T.F. (2013). Local Electrode Atom Probe Tomography: A User’s Guide. New York: Springer.Google Scholar
Li, T., Bagot, P.A.J., Marquis, E.A., Tsang, S.C.E. & Smith, G.D.W. (2012). Characterization of oxidation and reduction of Pt-Ru and Pt-Rh-Ru alloys by atom probe tomography and comparison with Pt-Rh. J Phys Chem C 116(33), 1763317640.CrossRefGoogle Scholar
Marceau, R.K.W., Choi, P. & Raabe, D. (2013). Understanding the detection of carbon in austenitic high-Mn steel using atom probe tomography. Ultramicroscopy 132, 239247.CrossRefGoogle ScholarPubMed
Meisenkothen, F., Steel, E.B., Prosa, T.J., Henry, K.T. & Prakash Kolli, R. (2015). Effects of detector dead-time on quantitative analyses involving boron and multi-hit detection events in atom probe tomography. Ultramicroscopy 159, 101111.Google Scholar
Meisnar, M., Moody, M.P. & Lozano-Perez, S. (2015). Atom probe tomography of stress corrosion crack tips in SUS316 stainless steels. Corros Sci 98, 661671.Google Scholar
Moody, M.P., Gault, B., Stephenson, L.T., Marceau, R.K.W., Powles, R.C., Ceguerra, A.V., Breen, A.J. & Ringer, S.P. (2011). Lattice rectification in atom probe tomography: Toward true three-dimensional atomic microscopy. Microsc Microanal 17(2), 226239.Google Scholar
Muller, E.W., Panitz, J.A. & Mcclane, S.B. (1968). The atom-probe field ion microscope. Rev Sci Instrum 39, 8386.CrossRefGoogle Scholar
Panitz, J.A. (1973). The 10cm atom probe. Rev Sci Instrum 44(8), 10341038.CrossRefGoogle Scholar
Pedrazzini, S., Child, D.J., West, G., Doak, S.S., Hardy, M.C., Moody, M.P. & Bagot, P.A.J. (2016). Oxidation behaviour of a next generation polycrystalline Mn containing Ni-based superalloy. Scripta Mater 113, 5154.Google Scholar
Prosa, T.J., Geiser, B.P., Lawrence, D.J., Olsen, J.D. & Larson, D.J. (2014). Developing detection efficiency standards for atom probe tomography. Proceedings of SPIE 9173, Instrumentation, Metrology, and Standards for Nanomanufacturing, Optics and Semiconductors VIII, 917307. San Diego, CA, USA.Google Scholar
Robertson, C., Panigrahi, B.K., Balaji, S., Kataria, S., Serruys, Y., Mathon, M.-H. & Sundar, C.S. (2012). Particle stability in model ODS steel irradiated up to 100 dpa at 600°C: TEM and nano-indentation investigation. J Nucl Mater 426, 240246.Google Scholar
Rolander, U. & Andrén, H.-O. (1989). Statistical correction for pile-up in the atom-probe detector system. J Phys Colloq 50, C8-529C8-534.Google Scholar
Santhanagopalan, D., Schrieber, D.K., Perea, D.E., Martens, R.L., Janssen, Y., Khalifah, P. & Meng, Y.S. (2015). Effects of laser energy and wavelength on the analysis of LiFePO4 using laser assisted atom probe tomography. Ultramicroscopy 148, 5766.CrossRefGoogle ScholarPubMed
Steiner, T., Meka, S.R., Rheingans, B., Boschoff, E., Waldenmaier, T., Guma, Y., Martin, T.L., Bagot, P.A.J., Moody, M.P. & Mittemeijer, E.J. (2016). Continuous and discontinuous precipitation in Fe-1 at.% Cr-1 at.% Mo alloy upon nitriding; crystal structure and composition of ternary nitrides. Philos Mag 96(15), 15091537.Google Scholar
Styman, P.D., Hyde, J.M., Wilford, K., Morley, A. & Smith, G.D.W. (2012). Precipitation in long term thermally aged high copper, high nickel model RPV steel welds. Prog Nucl Energ 57, 8692.Google Scholar
Thompson, K., Lawrence, D.J., Larson, D.J., Olsen, J.D., Kelly, T.F. & Gorman, B. (2007). In-situ site-specific specimen preparation for atom probe tomography. Ultramicroscopy 107, 131139.Google Scholar
Thuvander, M., Kvist, A., Johnson, L.J.S., Weidow, J. & Andrén, H.-O. (2013). Reduction of multiple hits in atom probe tomography. Ultramicroscopy 132, 8185.Google Scholar
Valley, J.W., Cavosie, A.J., Ushikubo, T., Reinhard, D.A., Lawrence, D.F., Larson, D.J., Clifton, P.H., Kelly, T.F., Wilde, S.A., Moser, D.E. & Spicuzza, M.J. (2014). Hadean age for a post-magma-ocean zircon confirmed by atom-probe tomography. Nat Geosci 7, 219223.Google Scholar