Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-26T11:24:45.313Z Has data issue: false hasContentIssue false

Effect of Mycotoxin-Containing Diets on Epigenetic Modifications of Mouse Oocytes by Fluorescence Microscopy Analysis

Published online by Cambridge University Press:  09 May 2014

Cheng-Cheng Zhu
Affiliation:
College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
Yan-Jun Hou
Affiliation:
College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
Jun Han
Affiliation:
College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
Hong-Lin Liu
Affiliation:
College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
Xiang-Shun Cui
Affiliation:
Department of Animal Sciences, Chungbuk National University, Cheongju 361-763, Korea
Nam-Hyung Kim
Affiliation:
Department of Animal Sciences, Chungbuk National University, Cheongju 361-763, Korea
Shao-Chen Sun*
Affiliation:
College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
*
*Corresponding author. sunsc@njau.edu.cn
Get access

Abstract

Mycotoxins, such as aflatoxin (AF), fumonisin B1, zearalenone (ZEA), and deoxynivalenol (DON), are commonly found in many food commodities. Mycotoxins have been shown to increase DNA methylation levels in a human intestinal cell line. We previously showed that the developmental competence of oocytes was affected in mice that had been fed a mycotoxin-containing diet. In this study, we explored possible mechanisms of low mouse oocyte developmental competence after mycotoxin treatment in an epigenetic modification perspective. Mycotoxin-contaminated maize (DON at 3,875 μg/kg, ZEA at 1,897 μg/kg, and AF at 806 μg/kg) was included in diets at three different doses (mass percentage: 0, 15, and 30%) and fed to mice for 4 weeks. The fluorescence intensity analysis showed that the general DNA methylation levels increased in oocytes from high dose mycotoxin-fed mice. Mouse oocyte histone methylation was also altered. H3K9me3 and H4K20me3 level increased in oocytes from mycotoxin-fed mice, whereas H3K27me3 and H4K20me2 level decreased in oocytes from mycotoxin-fed mice. Thus, our results indicate that naturally occurring mycotoxins have effects on epigenetic modifications in mouse oocytes, which may be one of the reasons for reduced oocyte developmental competence.

Type
Biological Applications
Copyright
© Microscopy Society of America 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

a

Equal contribution.

References

Abado-Becognee, K., Mobio, T.A., Ennamany, R., Fleurat-Lessard, F., Shier, W., Badria, F. & Creppy, E.E. (1998). Cytotoxicity of fumonisin B1: Implication of lipid peroxidation and inhibition of protein and DNA syntheses. Arch Toxicol 72 4), 233236.CrossRefGoogle ScholarPubMed
Abid-Essefi, S., Ouanes, Z., Hassen, W., Baudrimont, I., Creppy, E. & Bacha, H. (2004). Cytotoxicity, inhibition of DNA and protein syntheses and oxidative damage in cultured cells exposed to zearalenone. Toxicol in vitro 18(4), 467474.CrossRefGoogle ScholarPubMed
Abouzied, M., Azcona, J., Braselton, W. & Pestka, J. (1991). Immunochemical assessment of mycotoxins in 1989 grain foods: Evidence for deoxynivalenol (vomitoxin) contamination. Appl Environ Microbiol 57(3), 672677.CrossRefGoogle ScholarPubMed
Bernstein, B.E., Mikkelsen, T.S., Xie, X., Kamal, M., Huebert, D.J., Cuff, J., Fry, B., Meissner, A., Wernig, M. & Plath, K. (2006). A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125(2), 315326.CrossRefGoogle ScholarPubMed
Bourc’his, D., Xu, G.-L., Lin, C.-S., Bollman, B. & Bestor, T.H. (2001). Dnmt3L and the establishment of maternal genomic imprints. Science 294(5551), 25362539.CrossRefGoogle ScholarPubMed
Chu, F.S. & Li, G.Y. (1994). Simultaneous occurrence of fumonisin B1 and other mycotoxins in moldy corn collected from the People’s Republic of China in regions with high incidences of esophageal cancer. Appl Environ Microbiol 60(3), 847852.CrossRefGoogle ScholarPubMed
Creppy, E.E. (2002). Update of survey, regulation and toxic effects of mycotoxins in Europe. Toxicol Lett 127(1), 1928.CrossRefGoogle ScholarPubMed
Eppig, J.J. & Schroeder, A.C. (1989). Capacity of mouse oocytes from preantral follicles to undergo embryogenesis and development to live young after growth, maturation, and fertilization in vitro. Biol Reprod 41(2), 268276.CrossRefGoogle ScholarPubMed
Erhardt, S., Su, I.H., Schneider, R., Barton, S., Bannister, A.J., Perez-Burgos, L., Jenuwein, T., Kouzarides, T., Tarakhovsky, A. & Surani, M.A. (2003). Consequences of the depletion of zygotic and embryonic enhancer of zeste 2 during preimplantation mouse development. Development 130(18), 42354248.CrossRefGoogle ScholarPubMed
Evertts, A.G., Manning, A.L., Wang, X., Dyson, N.J., Garcia, B.A. & Coller, H.A. (2013). H4K20 methylation regulates quiescence and chromatin compaction. Mol Biol Cell 24(19), 30253037.CrossRefGoogle ScholarPubMed
Gelderblom, W., Jaskiewicz, K., Marasas, W., Thiel, P., Horak, R., Vleggaar, R. & Kriek, N. (1988). Fumonisins – Novel mycotoxins with cancer-promoting activity produced by Fusarium moniliforme . Appl Environ Microbiol 54(7), 18061811.CrossRefGoogle ScholarPubMed
Govin, J., Dorsey, J., Gaucher, J., Rousseaux, S., Khochbin, S. & Berger, S.L. (2010). Systematic screen reveals new functional dynamics of histones H3 and H4 during gametogenesis. Genes Dev 24(16), 17721786.CrossRefGoogle ScholarPubMed
Hata, K., Okano, M., Lei, H. & Li, E. (2002). Dnmt3L cooperates with the Dnmt3 family of de novo DNA methyltransferases to establish maternal imprints in mice. Development 129(8), 19831993.CrossRefGoogle ScholarPubMed
Hirota, T., Lipp, J.J., Toh, B.-H. & Peters, J.-M. (2005). Histone H3 serine 10 phosphorylation by Aurora B causes HP1 dissociation from heterochromatin. Nature 438(7071), 11761180.CrossRefGoogle ScholarPubMed
Hou, Y.J., Xiong, B., Zheng, W.J., Duan, X., Cui, X.S., Kim, N.H., Wang, Q., Xu, Y.X. & Sun, S.C. (2014). Oocyte quality in mice is affected by a mycotoxin-contaminated diet. Environ Mol Mutagen 15(4), 354362.CrossRefGoogle Scholar
Kageyama, S.-I., Liu, H., Kaneko, N., Ooga, M., Nagata, M. & Aoki, F. (2007). Alterations in epigenetic modifications during oocyte growth in mice. Reproduction 133(1), 8594.CrossRefGoogle ScholarPubMed
Kaneda, M., Okano, M., Hata, K., Sado, T., Tsujimoto, N., Li, E. & Sasaki, H. (2004). Essential role for de novo DNA methyltransferase Dnmt3a in paternal and maternal imprinting. Nature 429(6994), 900903.CrossRefGoogle Scholar
Kelly, A.E., Ghenoiu, C., Xue, J.Z., Zierhut, C., Kimura, H. & Funabiki, H. (2010). Survivin reads phosphorylated histone H3 threonine 3 to activate the mitotic kinase Aurora B. Science 330(6001), 235239.CrossRefGoogle ScholarPubMed
Kornberg, R.D. & Lorch, Y. (1999). Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome. Cell 98(3), 285294.CrossRefGoogle ScholarPubMed
Lee, T.I., Jenner, R.G., Boyer, L.A., Guenther, M.G., Levine, S.S., Kumar, R.M., Chevalier, B., Johnstone, S.E., Cole, M.F. & Isono, K.-I. (2006). Control of developmental regulators by Polycomb in human embryonic stem cells. Cell 125(2), 301313.CrossRefGoogle ScholarPubMed
Malachova, A., Dzuman, Z., Veprikova, Z., Vaclavikova, M., Zachariasova, M. & Hajslova, J. (2011). Deoxynivalenol, deoxynivalenol-3-glucoside, and enniatins: The major mycotoxins found in cereal-based products on the Czech market. J Agric Food Chem 59(24), 1299012997.CrossRefGoogle ScholarPubMed
Meca, G., Zinedine, A., Blesa, J., Font, G. & Mañes, J. (2010). Further data on the presence of Fusarium emerging mycotoxins enniatins, fusaproliferin and beauvericin in cereals available on the Spanish markets. Food Chem Toxicol 48(5), 14121416.CrossRefGoogle ScholarPubMed
Nishioka, K., Rice, J.C., Sarma, K., Erdjument-Bromage, H., Werner, J., Wang, Y., Chuikov, S., Valenzuela, P., Tempst, P. & Steward, R. (2002). PR-Set7 is a nucleosome-specific methyltransferase that modifies lysine 20 of histone H4 and is associated with silent chromatin. Mol Cell 9(6), 12011213.CrossRefGoogle ScholarPubMed
Oda, H., Hübner, M.R., Beck, D.B., Vermeulen, M., Hurwitz, J., Spector, D.L. & Reinberg, D. (2010). Regulation of the histone H4 monomethylase PR-Set7 by CRL4Cdt2-mediated PCNA-dependent degradation during DNA damage. Mol Cell 40(3), 364376.CrossRefGoogle Scholar
Oda, H., Okamoto, I., Murphy, N., Chu, J., Price, S.M., Shen, M.M., Torres-Padilla, M.E., Heard, E. & Reinberg, D. (2009). Monomethylation of histone H4-lysine 20 is involved in chromosome structure and stability and is essential for mouse development. Mol Cell Biol 29(8), 22782295.CrossRefGoogle ScholarPubMed
Pan, G., Tian, S., Nie, J., Yang, C., Ruotti, V., Wei, H., Jonsdottir, G.A., Stewart, R. & Thomson, J.A. (2007). Whole-genome analysis of histone H3 lysine 4 and lysine 27 methylation in human embryonic stem cells. Cell Stem Cell 1(3), 299312.CrossRefGoogle ScholarPubMed
Pestka, J.J., Zhou, H.-R., Moon, Y. & Chung, Y. (2004). Cellular and molecular mechanisms for immune modulation by deoxynivalenol and other trichothecenes: Unraveling a paradox. Toxicol Lett 153(1), 6173.CrossRefGoogle ScholarPubMed
Reik, W., Dean, W. & Walter, J. (2001). Epigenetic reprogramming in mammalian development. Science 293(5532), 10891093.CrossRefGoogle ScholarPubMed
Rheeder, J., Marasas, W., Theil, P., Sydenham, E., Shephard, G. & Van Schalkwyk, D. (1992). Fusarium moniliforme and fumonisins in corn in relation to human esophageal cancer in Transkei. Phytopathology 82(3), 353357.CrossRefGoogle Scholar
Robertson, K.D. & Wolffe, A.P. (2000). DNA methylation in health and disease. Nat Rev Genet 1(1), 1119.CrossRefGoogle ScholarPubMed
Sakaguchi, A. & Steward, R. (2007). Aberrant monomethylation of histone H4 lysine 20 activates the DNA damage checkpoint in Drosophila melanogaster . J Cell Biol 176(2), 155162.CrossRefGoogle ScholarPubMed
Schlatter, J. (2004). Toxicity data relevant for hazard characterization. Toxicol Lett 153(1), 8389.CrossRefGoogle ScholarPubMed
Schultz, R.M. (2002). The molecular foundations of the maternal to zygotic transition in the preimplantation embryo. Human Reprod Update 8(4), 323331.CrossRefGoogle ScholarPubMed
Shifrin, V.I. & Anderson, P. (1999). Trichothecene mycotoxins trigger a ribotoxic stress response that activates c-Jun N-terminal kinase and p38 mitogen-activated protein kinase and induces apoptosis. J Biol Chem 274(20), 1398513992.CrossRefGoogle ScholarPubMed
Tachibana, M., Nozaki, M., Takeda, N. & Shinkai, Y. (2007). Functional dynamics of H3K9 methylation during meiotic prophase progression. EMBO J 26(14), 33463359.CrossRefGoogle ScholarPubMed
Tang, W.-Y. & Ho, S.-M. (2007). Epigenetic reprogramming and imprinting in origins of disease. Rev Endocr Metab Disord 8(2), 173182.CrossRefGoogle ScholarPubMed
Torres-Padilla, M.-E., Parfitt, D.-E., Kouzarides, T. & Zernicka-Goetz, M. (2007). Histone arginine methylation regulates pluripotency in the early mouse embryo. Nature 445(7124), 214218.CrossRefGoogle ScholarPubMed
Trasler, J.M. (2005). Gamete imprinting: Setting epigenetic patterns for the next generation. Reprod, Fertil Dev 18(2), 6369.CrossRefGoogle Scholar
Wang, F., Dai, J., Daum, J.R., Niedzialkowska, E., Banerjee, B., Stukenberg, P.T., Gorbsky, G.J. & Higgins, J.M. (2010). Histone H3 Thr-3 phosphorylation by Haspin positions Aurora B at centromeres in mitosis. Science 330(6001), 231235.CrossRefGoogle ScholarPubMed
Yamagishi, Y., Honda, T., Tanno, Y. & Watanabe, Y. (2010). Two histone marks establish the inner centromere and chromosome bi-orientation. Science 330(6001), 239243.CrossRefGoogle ScholarPubMed
Yang, C.S. (1980). Research on esophageal cancer in China: A review. Cancer Res 40(8, Part 1), 26332644.Google Scholar
Zager, R.A., Conrad, D.S. & Burkhart, K. (1998). Ceramide accumulation during oxidant renal tubular injury: Mechanisms and potential consequences. J Am Soc Nephrol 9(9), 16701680.CrossRefGoogle ScholarPubMed
Zuccotti, M., Garagna, S., Merico, V., Monti, M. & Alberto Redi, C. (2005). Chromatin organisation and nuclear architecture in growing mouse oocytes. Mol Cell Endocrinol 234(1), 1117.CrossRefGoogle ScholarPubMed