Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-28T04:45:12.031Z Has data issue: false hasContentIssue false

Evaluation of Analysis Conditions for Laser-Pulsed Atom Probe Tomography: Example of Cemented Tungsten Carbide

Published online by Cambridge University Press:  17 January 2017

Zirong Peng*
Affiliation:
Department of Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Straße 1, 40237 Düsseldorf, Germany
Pyuck-Pa Choi
Affiliation:
Department of Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Straße 1, 40237 Düsseldorf, Germany Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 305-338, Republic of Korea
Baptiste Gault*
Affiliation:
Department of Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Straße 1, 40237 Düsseldorf, Germany
Dierk Raabe
Affiliation:
Department of Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Straße 1, 40237 Düsseldorf, Germany
*
*Corresponding authors.z.peng@mpie.de; b.gault@mpie.de
*Corresponding authors.z.peng@mpie.de; b.gault@mpie.de
Get access

Abstract

Cemented tungsten carbide has been analyzed using laser-pulsed atom probe tomography (APT). The influence of experimental parameters, including laser pulse energy, pulse repetition rate, and specimen base temperature, on the acquired data were evaluated from different aspects, such as mass spectrum, chemical composition, noise-to-signal ratio, and multiple events. Within all the applied analysis conditions, only 1 MHz pulse repetition rate led to a strong detector saturation effect, resulting in a largely biased chemical composition. A comparative study of the laser energy settings showed that an ~12 times higher energy was required for the less focused green laser of the LEAPTM 3000X HR system to achieve a similar evaporation field as the finer spot ultraviolet laser of the LEAPTM 5000 XS system.

Type
Materials Science (Nonmetals)
Copyright
© Microscopy Society of America 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andrén, H.-O. (2001). Microstructures of cemented carbides. Mater Des 22, 491498.Google Scholar
Angseryd, J., Liu, F., Andrén, H.-O., Gerstl, S.S.A. & Thuvander, M. (2011). Quantitative APT analysis of Ti(C,N). Ultramicroscopy 111, 609614.Google Scholar
Bhadeshia, H.K.D.H. & Waugh, A.R. (1982). Bainite: An atom-probe study of the incomplete reaction phenomenon. Acta Metall 30, 775784.Google Scholar
Blavette, D., Bostel, A., Sarrau, J.M., Deconihout, B. & Menand, A. (1993). An atom probe for three-dimensional tomography. Nature 363, 432435.Google Scholar
Bunton, J.H., Olson, J.D., Lenz, D.R. & Kelly, T.F. (2007). Advances in pulsed-laser atom probe: Instrument and specimen design for optimum performance. Microsc Microanal 13, 418427.CrossRefGoogle ScholarPubMed
Cerezo, A., Clifton, P.H., Gomberg, A. & Smith, G.D.W. (2007). Aspects of the performance of a femtosecond laser-pulsed 3-dimensional atom probe. Ultramicroscopy 107, 720725.Google Scholar
Da Costa, G., Vurpillot, F., Bostel, A., Bouet, M. & Deconihout, B. (2005). Design of a delay-line position-sensitive detector with improved performance. Rev Sci Instrum 76, 13304.Google Scholar
De Geuser, F., Gault, B., Bostel, A. & Vurpillot, F. (2007). Correlated field evaporation as seen by atom probe tomography. Surf Sci 601, 536543.Google Scholar
Diercks, D.R. & Gorman, B.P. (2015). Nanoscale measurement of laser-induced temperature rise and field evaporation effects in CdTe and GaN. J Phys Chem C 119, 2062320631.Google Scholar
Fomenko, V.S. (1966). Chapter 1 chemical elements & Chapter 2 chemical compounds. In Handbook of Thermionic Properties: Electronic Work Functions and Richardson Constants of Elements and Compounds, Samsonov, G. V. (Ed.), pp. 5356 & 98. New York: Plenum Press Data Division.Google Scholar
Gault, B., Moody, M.P., Cairney, J.M. & Ringer, S.P. (2012). Atom Probe Microscopy. New York: Springer.Google Scholar
Gault, B., Saxey, D.W., Ashton, M.W., Sinnott, S.B., Chiaramonti, A.N., Moody, M.P. & Schreiber, D.K. (2016). Behavior of molecules and molecular ions near a field emitter. New J Phys 18, 33031.Google Scholar
Gipson, G.S. & Eaton, H.C. (1980). The electric field distribution in the field ion microscope as a function of specimen shank. J Appl Phys 51, 5537.Google Scholar
Gomer, R. (1961). Chapters 1–2. Field emission and field ionization, pp. 2–49. Cambridge: Harvard University Press.Google Scholar
Herbig, M., Raabe, D., Li, Y.J., Choi, P., Zaefferer, S. & Goto, S. (2014). Atomic-scale quantification of grain boundary segregation in nanocrystalline material. Phys Rev Lett 112, 126103.Google Scholar
Houard, J., Vella, A., Vurpillot, F. & Deconihout, B. (2010). Optical near-field absorption at a metal tip far from plasmonic resonance. Phys Rev B 81, 125411.Google Scholar
Hudson, D., Smith, G.D.W. & Gault, B. (2011). Optimisation of mass ranging for atom probe microanalysis and application to the corrosion processes in Zr alloys. Ultramicroscopy 111, 480486.Google Scholar
Hyde, J.M., Cerezo, A., Setna, R.P., Warren, P.J. & Smith, G.D.W. (1994). Lateral and depth scale calibration of the position sensitive atom probe. Appl Surf Sci 76–77, 382391.Google Scholar
Isik, M.I., Kostka, A., Yardley, V.A., Pradeep, K.G., Duarte, M.J., Choi, P.P., Raabe, D. & Eggeler, G. (2015). The nucleation of Mo-rich Laves phase particles adjacent to M23C6 micrograin boundary carbides in 12% Cr tempered martensite ferritic steels. Acta Mater 90, 94104.CrossRefGoogle Scholar
Jagutzki, O., Cerezo, A., Czasch, A., Dörner, R., Hattaß, M., Mergel, V., Spillmann, U., Ullmann-Pfleger, K., Weber, T., Schmidt-Bocking, H. & Smith, G.D.W. (2002). Multiple hit readout of a microchannel plate detector with a three-layer delay-line anode. IEEE Trans Nucl Sci 49, 24772483.Google Scholar
Kellogg, G.L. (1981). Determining the field emitter temperature during laser irradiation in the pulsed laser atom probe. J Appl Phys 52, 5320.Google Scholar
Kellogg, G.L. & Tsong, T.T. (1980). Pulsed-laser atom-probe field-ion microscopy. J Appl Phys 51, 1184.Google Scholar
Kelly, T.F. & Miller, M.K. (2007). Invited review article: Atom probe tomography. Rev Sci Instrum 78, 31101.CrossRefGoogle ScholarPubMed
Kingham, D.R. (1982). The post-ionization of field evaporated ions: A theoretical explanation of multiple charge states. Surf Sci 116, 273301.Google Scholar
Kitaguchi, H.S., Lozano-Perez, S. & Moody, M.P. (2014). Quantitative analysis of carbon in cementite using pulsed laser atom probe. Ultramicroscopy 147, 5160.Google Scholar
Kobayashi, Y., Takahashi, J. & Kawakami, K. (2011). Anomalous distribution in atom map of solute carbon in steel. Ultramicroscopy 111, 600603.Google Scholar
Kolli, R.P. & Meisenkothen, F. (2014). The influence of experimental parameters and specimen geometry on the mass spectra of copper during pulsed-laser atom-probe tomography. Microsc Microanal 20, 17151726.Google Scholar
La Fontaine, A., Gault, B., Breen, A., Stephenson, L., Ceguerra, A.V, Yang, L., Dinh Nguyen, T., Zhang, J., Young, D.J. & Cairney, J.M. (2015). Interpreting atom probe data from chromium oxide scales. Ultramicroscopy 159, 354359.CrossRefGoogle ScholarPubMed
Lee, M.J.G., Reifenberger, R., Robins, E.S. & Lindenmayr, H.G. (1980). Thermally enhanced field emission from a laser-illuminated tungsten tip: Temperature rise of tip. J Appl Phys 51, 4996.Google Scholar
Li, Y.J., Choi, P., Borchers, C., Westerkamp, S., Goto, S., Raabe, D. & Kirchheim, R. (2011). Atomic-scale mechanisms of deformation-induced cementite decomposition in pearlite. Acta Mater 59, 39653977.Google Scholar
Li, Y., Raabe, D., Herbig, M., Choi, P.-P., Goto, S., Kostka, A., Yarita, H., Borchers, C. & Kirchheim, R. (2014). Segregation stabilizes nanocrystalline bulk steel with near theoretical strength. Phys Rev Lett 113, 106104.Google Scholar
Liu, H.F. & Tsong, T.T. (1984). Numerical calculation of the temperature evolution and profile of the field ion emitter in the pulsed-laser time-of-flight atom probe. Rev Sci Instrum 55, 1779.Google Scholar
Loi, S.T., Gault, B., Ringer, S.P., Larson, D.J. & Geiser, B.P. (2013). Electrostatic simulations of a local electrode atom probe: The dependence of tomographic reconstruction parameters on specimen and microscope geometry. Ultramicroscopy 132, 107113.Google Scholar
Marceau, R.K.W., Choi, P. & Raabe, D. (2013). Understanding the detection of carbon in austenitic high-Mn steel using atom probe tomography. Ultramicroscopy 132, 239247.Google Scholar
Marquis, E.A. & Gault, B. (2008). Determination of the tip temperature in laser assisted atom-probe tomography using charge state distributions. J Appl Phys 104, 84914.Google Scholar
Meisenkothen, F., Steel, E.B., Prosa, T.J., Henry, K.T. & Prakash Kolli, R. (2015). Effects of detector dead-time on quantitative analyses involving boron and multi-hit detection events in atom probe tomography. Ultramicroscopy 159, 101111.Google Scholar
Miller, M.K., Angelini, P., Cerezo, A. & More, K.L. (1989). Pulsed laser atom probe characterization of silicon carbide. J Phys Colloq 50, C8-459C8-464.Google Scholar
Miller, M.K., Beaven, P.A., Brenner, S.S. & Smith, G.D.W. (1983). An atom probe study of the aging of iron-nickel-carbon martensite. Metall Trans A 14, 10211024.Google Scholar
Miller, M.K. & Smith, G.D.W. (1977). Atom probe microanalysis of a pearlitic steel. Met Sci 11, 249253.Google Scholar
Miyamoto, G., Shinbo, K. & Furuhara, T. (2012). Quantitative measurement of carbon content in Fe–C binary alloys by atom probe tomography. Scr Mater 67, 9991002.Google Scholar
Müller, E.W. (1968). The atom-probe field ion microscope. Rev Sci Instrum 39, 83.Google Scholar
Müller, M., Saxey, D.W., Smith, G.D.W. & Gault, B. (2011). Some aspects of the field evaporation behaviour of GaSb. Ultramicroscopy 111, 487492.CrossRefGoogle ScholarPubMed
Perea, D.E., Wijaya, E., Lensch-Falk, J.L., Hemesath, E.R. & Lauhon, L.J. (2008). Tomographic analysis of dilute impurities in semiconductor nanostructures. J Solid State Chem 181, 16421649.Google Scholar
Podchernyaeva, I.A., Samsonov, G.V & Fomenko, V.S. (1969). Differences in emission parameters and adsorption properties of single-crystal faces. Soviet Phys J 12, 721725.Google Scholar
Rolander, U. & Andrén, H.-O. (1989 a). Evaluation of atom-probe spectra from titanium carbonitride. J Phys Colloq 50, C8-371C8-376.Google Scholar
Rolander, U. & Andrén, H.-O. (1989 b). Statistical correction for pile-up in the atom-probe detector system. J Phys Colloq 50, C8-529C8-534.Google Scholar
Santhanagopalan, D., Schreiber, D.K., Perea, D.E., Martens, R.L., Janssen, Y., Khalifah, P. & Meng, Y.S. (2015). Effects of laser energy and wavelength on the analysis of LiFePO4 using laser assisted atom probe tomography. Ultramicroscopy 148, 5766.CrossRefGoogle ScholarPubMed
Saxey, D.W. (2011). Correlated ion analysis and the interpretation of atom probe mass spectra. Ultramicroscopy 111, 473479.Google Scholar
Schreiber, D.K., Chiaramonti, A.N., Gordon, L.M. & Kruska, K. (2014). Applicability of post-ionization theory to laser-assisted field evaporation of magnetite. Appl Phys Lett 105, 244106.CrossRefGoogle Scholar
Seol, J.-B., Raabe, D., Choi, P., Park, H.-S., Kwak, J.-H. & Park, C.-G. (2013). Direct evidence for the formation of ordered carbides in a ferrite-based low-density Fe–Mn–Al–C alloy studied by transmission electron microscopy and atom probe tomography. Scr Mater 68, 348353.Google Scholar
Sha, W., Chang, L., Smith, G.D.W. & Mittemeijer, E.J. (1992). Some aspects of atom-probe analysis of Fe-C and Fe-N systems. Surf Sci 266, 416423.Google Scholar
Shariq, A., Mutas, S., Wedderhoff, K., Klein, C., Hortenbach, H., Teichert, S., Kücher, P. & Gerstl, S.S.A. (2009). Investigations of field-evaporated end forms in voltage- and laser-pulsed atom probe tomography. Ultramicroscopy 109, 472479.CrossRefGoogle ScholarPubMed
Stephan, T., Heck, P.R., Isheim, D. & Lewis, J.B. (2015). Correction of dead time effects in laser-induced desorption time-of-flight mass spectrometry: Applications in atom probe tomography. Int J Mass Spectrom 379, 4651.Google Scholar
Takahashi, J., Kawakami, K. & Kobayashi, Y. (2011). Quantitative analysis of carbon content in cementite in steel by atom probe tomography. Ultramicroscopy 111, 12331238.Google Scholar
Tang, F., Gault, B., Ringer, S.P. & Cairney, J.M. (2010). Optimization of pulsed laser atom probe (PLAP) for the analysis of nanocomposite Ti–Si–N films. Ultramicroscopy 110, 836843.Google Scholar
Thompson, K., Lawrence, D., Larson, D.J., Olson, J.D., Kelly, T.F. & Gorman, B. (2007). In situ site-specific specimen preparation for atom probe tomography. Ultramicroscopy 107, 131139.Google Scholar
Thuvander, M., Kvist, A., Johnson, L.J.S., Weidow, J. & Andrén, H.-O. (2013). Reduction of multiple hits in atom probe tomography. Ultramicroscopy 132, 8185.Google Scholar
Thuvander, M., Weidow, J., Angseryd, J., Falk, L.K.L., Liu, F., Sonestedt, M., Stiller, K. & Andrén, H.-O. (2011). Quantitative atom probe analysis of carbides. Ultramicroscopy 111, 604608.Google Scholar
Tsong, T.T. (1985). Orientational and isotope effects in field dissociation by atomic tunneling of compound ions. Phys Rev Lett 55, 28262828.Google Scholar
Tytko, D., Choi, P.-P., Klöwer, J., Kostka, A., Inden, G. & Raabe, D. (2012). Microstructural evolution of a Ni-based superalloy (617B) at 700°C studied by electron microscopy and atom probe tomography. Acta Mater 60, 17311740.Google Scholar
Vurpillot, F., Gault, B., Vella, A., Bouet, M. & Deconihout, B. (2006). Estimation of the cooling times for a metallic tip under laser illumination. Appl Phys Lett 88, 94105.Google Scholar
Vurpillot, F., Houard, J., Vella, A. & Deconihout, B. (2009). Thermal response of a field emitter subjected to ultra-fast laser illumination. J Phys D Appl Phys 42, 125502.Google Scholar
Yao, L., Gault, B., Cairney, J.M. & Ringer, S.P. (2010). On the multiplicity of field evaporation events in atom probe: A new dimension to the analysis of mass spectra. Philos Mag Lett 90, 121129.Google Scholar
Yao, M.J., Dey, P., Seol, J.-B., Choi, P., Herbig, M., Marceau, R.K.W., Hickel, T., Neugebauer, J. & Raabe, D. (2016). Combined atom probe tomography and density functional theory investigation of the Al off-stoichiometry of κ-carbides in an austenitic Fe–Mn–Al–C low density steel. Acta Mater 106, 229238.Google Scholar
Supplementary material: Image

Peng supplementary material

Peng supplementary material 1

Download Peng supplementary material(Image)
Image 654.6 KB
Supplementary material: Image

Peng supplementary material

Peng supplementary material 2

Download Peng supplementary material(Image)
Image 2.3 MB
Supplementary material: File

Peng supplementary material

Table S1

Download Peng supplementary material(File)
File 13.1 KB