Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-25T03:00:03.408Z Has data issue: false hasContentIssue false

Large Area Cryo-Planing of Vitrified Samples Using Broad-Beam Ion Milling

Published online by Cambridge University Press:  12 October 2015

Irene Y. T. Chang
Affiliation:
Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, IL 60208, USA
Derk Joester*
Affiliation:
Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, IL 60208, USA
*
*Corresponding author.d-joester@northwestern.edu
Get access

Abstract

On account of its excellent resolution and high throughput, cryoSEM imaging has recently seen resurgence. In this work, we report on the development of cryogenic triple ion gun milling (CryoTIGM™), a broad ion beam milling technique for cryo-planing of vitrified, “frozen-hydrated” specimens. We find that sections prepared with CryoTIGM™ are smooth over exceptionally large areas (~700,000 µm2), and reveal ultrastructural details in similar or better quality than freeze-fractured samples.

Type
Equipment and Techniques Development
Copyright
© Microscopy Society of America 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Banfield, J.F., Welch, S.A., Zhang, H., Ebert, T.T. & Penn, R.L. (2000). Aggregation-based crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products. Science 289(5480), 751754.Google Scholar
Beniash, E., Addadi, L. & Weiner, S. (1999). Cellular control over spicule formation in sea urchin embryos: A structural approach. J Struct Biol 125(1), 5062.Google Scholar
Branton, D. (1966). Fracture faces of frozen membranes. Proc Natl Acad Sci USA 55(5), 10481056.Google Scholar
Bushby, A.J., P’ng, K.M., Young, R.D., Pinali, C., Knupp, C. & Quantock, A.J. (2011). Imaging three-dimensional tissue architecture by focused ion beam scanning electron microscopy. Nat Protoc 6(6), 845858.Google Scholar
Denk, W. & Horstmann, H. (2004). Serial block-face scanning electron microscopy to reconstruct three-dimensional tissue nanostructure. PLoS Biol 2(11), 19001909.CrossRefGoogle ScholarPubMed
Desbois, G., Urai, J.L., Kukla, P.A., Wollenberg, U., Perez-Willard, F., Radi, Z. & Riholm, S. (2012). Distribution of brine in grain boundaries during static recrystallization in wet, synthetic halite: Insight from broad ion beam sectioning and SEM observation at cryogenic temperature. Contrib Mineral Petrol 163(1), 1931.Google Scholar
Desbois, G., Urai, J.L., Perez-Willard, F., Radi, Z., Offern, S., Burkart, I., Kukla, P.A. & Wollenberg, U. (2013). Argon broad ion beam tomography in a cryogenic scanning electron microscope: A novel tool for the investigation of representative microstructures in sedimentary rocks containing pore fluid. J Microsc 249(3), 215235.Google Scholar
Dubochet, J., Zuber, B., Eltsov, M., Bouchet-Marquis, C., Al-Amoudi, A. & Livolant, F. (2007). How to “read” a vitreous section. Methods Cell Biol 79, 385406.Google Scholar
Heymann, J.A.W., Shi, D., KIM, S., Bliss, D., Milne, J.L.S. & Subramaniam, S. (2009). 3D imaging of mammalian cells with ion-abrasion scanning electron microscopy. J Struct Biol 166(1), 17.Google Scholar
Kenzie, B.E.M., Holder, S.J. & Sommerdijk, N.A.J.M. (2012). Assessing internal structure of polymer assemblies from 2D to 3D CryoTEM: Bicontinuous micelles. Curr Opin Colloid Interface Sci 17(6), 343349.Google Scholar
Kiyosawa, K. (2003). Theoretical and experimental studies on freezing point depression and vapor pressure deficit as methods to measure osmotic pressure of aqueous polyethylene glycol and bovine serum albumin solutions. Biophys Chem 104(1), 171188.Google Scholar
Lucic, V., Rigort, A. & Baumeister, W. (2013). Cryo-electron tomography: The challenge of doing structural biology in situ. J Cell Biol 202(3), 407419.Google Scholar
Mahamid, J., Aichmayer, B., Shimoni, E., Ziblat, R., LI, C., Siegel, S., Paris, O., Fratzl, P., Weiner, S. & Addadi, L (2010). Mapping amorphous calcium phosphate transformation into crystalline mineral from the cell to the bone in zebrafish fin rays. Proc Natl Acad Sci USA 107(14), 63166321.CrossRefGoogle Scholar
Matthijs de Winter, D.A., Schneijdenberg, C.T., Lebbink, M.N., Lich, B., Verkleij, A.J., Drury, M.R. & Humbel, B.M. (2009). Tomography of insulating biological and geological materials using focused ion beam (FIB) sectioning and low-kV BSE imaging. J Microsc 233(3), 372383.Google Scholar
Nudelman, F., Pieterse, K., George, A., Bomans, P.H., Friedrich, H., Brylka, L.J., Hilbers, P.A., De With, G. & Sommerdijk, N.A. (2010). The role of collagen in bone apatite formation in the presence of hydroxyapatite nucleation inhibitors. Nat Mater 9(12), 10041009.Google Scholar
Pawley, J.B (2008). LVSEM for biology. In Biological Low-Voltage Scanning Electron Microscopy, Schatten, H. & Pawley, J.B. (Eds.), pp. 27106. New York: Springer.Google Scholar
Scheffel, A., Gruska, M., Faivre, D., Linaroudis, A., Plitzko, J.M. & Dirk, S. (2006). An acidic protein aligns magnetosomes along a filamentous structure in magnetotactic bacteria. Nature 440(7080), 110114.Google Scholar
Schertel, A., Snaidero, N., Han, H.-M., Ruhwedel, T., Laue, M., Grabenbauer, M. & Mobius, W. (2013). Cryo FIB-SEM: Volume imaging of cellular ultrastructure in native frozen specimens. J Struct Biol 184(2), 355360.CrossRefGoogle ScholarPubMed
Sousa, A.A. & Leapman, R.D. (2012). Development and application of STEM for the biological sciences. Ultramicroscopy 123, 3849.CrossRefGoogle ScholarPubMed
Studer, D., Humbel, B.M. & Chiquet, M. (2008). Electron microscopy of high pressure frozen samples: bridging the gap between cellular ultrastructure and atomic resolution. Histochem Cell Biol 130(5), 877889.Google Scholar
Vidavsky, N., Addadi, S., Mahamid, J., Shimoni, E., Ben-Ezra, D., Shpigel, M., Weiner, S. & Addadi, L (2014). Initial stages of calcium uptake and mineral deposition in sea urchin embryos. Proc Natl Acad Sci USA 111(1), 3944.CrossRefGoogle ScholarPubMed
Wu, C.-H., Park, A. & Joester, D. (2011). Bioengineering single crystal growth. J Am Chem Soc 133(6), 16581661.Google Scholar
Supplementary material: File

Chang and Joester supplementary material S1

Chang and Joester supplementary material

Download Chang and Joester supplementary material S1(File)
File 34.5 MB