Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T13:34:54.643Z Has data issue: false hasContentIssue false

Low-Cost Nanomanipulator for In Situ Experiments in a SEM

Published online by Cambridge University Press:  30 May 2006

Denise Nakabayashi
Affiliation:
Laboratório Nacional de Luz Síncrotron, C.P. 6192, 13084-971, Campinas, SP, Brazil Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, C.P. 6165, 13081–970, Campinas, SP, Brazil
Paulo C. Silva
Affiliation:
Laboratório Nacional de Luz Síncrotron, C.P. 6192, 13084-971, Campinas, SP, Brazil
Juan C. González
Affiliation:
Laboratório Nacional de Luz Síncrotron, C.P. 6192, 13084-971, Campinas, SP, Brazil
Varlei Rodrigues
Affiliation:
Laboratório Nacional de Luz Síncrotron, C.P. 6192, 13084-971, Campinas, SP, Brazil Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, C.P. 6165, 13081–970, Campinas, SP, Brazil
Daniel Ugarte
Affiliation:
Laboratório Nacional de Luz Síncrotron, C.P. 6192, 13084-971, Campinas, SP, Brazil Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, C.P. 6165, 13081–970, Campinas, SP, Brazil
Get access

Abstract

Here, we describe the development of an inexpensive and versatile manipulation system for in situ experiments in a field emission scanning electron microscope based on a parallel-guiding plate-spring mechanism and low cost materials. The system has been tested for a wide range of applications, such as collecting, moving, and positioning particles, fabricating atomic force microscopy tips based on carbon nanotubes, and characterizing individual nanobjects. The nanomanipulation results demonstrate that there are many opportunities for the use of physical manipulation in the bottom-up approach to fabrication of nanodevices.

Type
INSTRUMENTATION AND TECHNIQUE
Copyright
© 2006 Microscopy Society of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Crommie, M.F., Lutz, C.P., & Eigler, D.M. (1993). Confinement of electrons to quantum corrals on a metal surface. Science 262, 218220.CrossRefGoogle Scholar
Cumings, J. & Zettl, A. (2000). Low-friction nanoscale linear bearing realized from multiwall carbon nanotubes. Science 289, 602604.CrossRefGoogle Scholar
Dai, H., Hafner, J.H., Rinzler, A.G., Colbert, D.T., & Smalley, R. (1996). Nanotubes as nanoprobes in scanning probe microscopy. Nature 384, 147151.CrossRefGoogle Scholar
Ekvall, I., Wahlström, E., Claesson, D., Olin, H., & Olsson, E. (1999). Preparation and characterization of electrochemically etched W tips for STM. Meas Sci Technol 10, 1118.CrossRefGoogle Scholar
Falvo, M.R., Clary, G.J., Taylor, R.M., II, Chi, V., Brooks, F.P.J., Washburn, S., & Superfine, R. (1997). Bending and buckling of carbon nanotubes under large strain. Nature 389, 582584.CrossRefGoogle Scholar
Gutiérrez, H.R., Nakabayashi, D., Silva, P.C., Bortoleto, J.R.R., Rodrigues, V., Clerici, J.H., Cotta, M.A., & Ugarte, D. (2004). Carbon nanotube probe resolution: A quantitative analysis using Fourier Transform. Phys Stat Sol A 201, 888893.CrossRefGoogle Scholar
Howell, L.L. (2001). Compliant Mechanisms. New York: Wiley-Interscience.Google Scholar
Ibe, J.P., Bey, P.P., Jr., Brandow, S.L., Brizzolara, R.A., Burnham, N.A., DiLella, D.P., Lee, K.P., Marrian, C.R.K., & Colton, R.J. (1990). On the electrochemical etching of tips for scanning tunneling microscopy. J Vac Sci Technol A 8, 35703575.CrossRefGoogle Scholar
Iijima, S. (1991). Helical microtubules of graphitic carbon. Nature 354, 5658.CrossRefGoogle Scholar
Junno, T., Carisson, S.B., Xu, H., Montelius, L., & Samuelson, L. (1998). Fabrication of quantum devices by Ångström-level manipulation of nanoparticles with an atomic force microscope. Appl Phys Lett 72, 548550.CrossRefGoogle Scholar
Meirovich, L. (1986). Elements of Vibration Analysis. New York: McGraw-Hill.Google Scholar
Melmed, A. (1991). The art and science and other aspects of making sharp tips. J Vac Sci Technol B 9, 601608.CrossRefGoogle Scholar
Nakayama, Y., Nishijima, H., Akita, S., Hohmura, K.I., Yoshimura, S.H., & Takeyasu, K. (2000). Microprocess for fabricating carbon-nanotube probes of a scanning probe microscope. J Vac Sci Technol B 18, 661664.CrossRefGoogle Scholar
Nishijima, H., Akita, S., & Nakayama, Y. (1999). Novel process for fabricating nanodevices consisting of carbon nanotubes. Jpn J Appl Phys 38, 72477252.CrossRefGoogle Scholar
Ohnishi, H., Kondo, Y., & Takayanagi, K. (1998). Quantized condutance through individual rows of suspended gold atoms. Nature 395, 780783.CrossRefGoogle Scholar
Poncharal, P., Wang, Z.L., Ugarte, D., & Heer, W.A. (1999). Electrostatic deflections and electromechanical resonances of carbon nanotubes. Science 283, 15131516.Google Scholar
Wang, Z.L. (2003). Nanowires and Nanobelts: Material, Properties and Devices, Volume 1: Metal and Semiconductor Nanowires. Boston: Kluwer Academic Publishers.Google Scholar
Yu, M.-F., Lourie, O., Dyer, M.J., Moloni, K., Kelly, T.F., & Ruoff, R.S. (2000). Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287, 637640.CrossRefGoogle Scholar