Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-21T15:36:54.194Z Has data issue: false hasContentIssue false

Methods for Calibration of Specimen Temperature During In Situ Transmission Electron Microscopy Experiments

Published online by Cambridge University Press:  20 January 2020

Fabrizio Gaulandris
Affiliation:
Department of Energy Conversion and Storage, Technical University of Denmark, Fysikvej, DK-2800 Kgs. Lyngby, Denmak
Søren B. Simonsen*
Affiliation:
Department of Energy Conversion and Storage, Technical University of Denmark, Fysikvej, DK-2800 Kgs. Lyngby, Denmak
Jakob B. Wagner
Affiliation:
DTU Nanolab, Technical University of Denmark, Fysikvej DK-2800 Kgs. Lyngby, Denmark
Kristian Mølhave
Affiliation:
DTU Nanolab, Technical University of Denmark, Fysikvej DK-2800 Kgs. Lyngby, Denmark
Shun Muto
Affiliation:
Institute of Materials and Systems for Sustainability, Nagoya University, 464-8601 Furocho, Chikusa-ku, Nagoya, Aichi, Japan
Luise T. Kuhn
Affiliation:
Department of Energy Conversion and Storage, Technical University of Denmark, Fysikvej, DK-2800 Kgs. Lyngby, Denmak
*
*Author for correspondence: Søren B. Simonsen, E-mail: sobrs@dtu.dk
Get access

Abstract

One of the biggest challenges for in situ heating transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) is the ability to measure the local temperature of the specimen accurately. Despite technological improvements in the construction of TEM/STEM heating holders, the problem of being able to measure the real sample temperature is still the subject of considerable discussion. In this study, we review the present literature on methodologies for temperature calibration. We analyze calibration methods that require the use of a thermometric material in addition to the specimen under study, as well as methods that can be performed directly on the specimen of interest without the need for a previous calibration. Finally, an overview of the most important characteristics of all the treated techniques, including temperature ranges and uncertainties, is provided in order to provide an accessory database to consult before an in situ TEM/STEM temperature calibration experiment.

Type
Materials Science Applications
Copyright
Copyright © Microscopy Society of America 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abe, H, Terauchi, M, Kuzuo, R & Tanaka, M (1992). Temperature dependence of the volume-plasmon energy in aluminum. J Electron Mater 41, 465468.Google Scholar
Agar, AW & Lucas, JH (1962). Use of a new heating stage for the electron microscope. In Electron Microscopy, Fifth International Congress for Electron Microscopy, Breese, SS (Ed.), p. E-2. Philadelphia, PA: Academic Press.Google Scholar
Alam, SB, Panciera, F, Hansen, O, Mølhave, K & Ross, FM (2015). Creating new VLS silicon nanowire contact geometries by controlling catalyst migration. Nano Lett 15, 65356541.CrossRefGoogle ScholarPubMed
Allard, LF, Bigelow, WC, Jose-Yacaman, M, Nackashi, DP, Damiano, J & Mick, SE (2009). A new MEMS-based system for ultra-high-resolution imaging at elevated temperatures. Microsc Res Tech 72, 208215.CrossRefGoogle ScholarPubMed
Allen, GL, Bayles, RA, Gile, WW & Jesser, WA (1986). Small particle melting of pure metals. Thin Solid Films 144, 297308.CrossRefGoogle Scholar
Asoro, MA, Kovar, D, Shao-Horn, Y, Allard, LF & Ferreira, PJ (2010). Coalescence and sintering of Pt nanoparticles: In situ observation by aberration-corrected HAADF STEM. Nanotechnology 21, 025701.CrossRefGoogle ScholarPubMed
Baker, RTK & Harris, PS (1972). Controlled atmosphere electron microscopy. J Phys E 5, 793797.CrossRefGoogle Scholar
Baker, RTK, Thomas, C & Thomas, RB (1975). Continuous observation of the particle size behavior of platinum on alumina. J Catal 38, 510513.CrossRefGoogle Scholar
Banhart, F (2008). In-Situ Electron Microscopy at High Resolution. Singapore: Université de Strasbourg: World Scientific Publishing Co.CrossRefGoogle Scholar
Bayat, N, Carlberg, T & Cieslar, M (2017). In-situ study of phase transformations during homogenization of 6005 and 6082 Al alloys. J Alloys Compd 725, 504509.CrossRefGoogle Scholar
Begtrup, GE, Ray, KG, Kessler, BM, Yuzvinsky, TD, Garcia, H & Zettl, A (2007). Probing nanoscale solids at thermal extremes. Phys Rev Lett 99, 14.Google ScholarPubMed
Bernal, RA, Ramachandramoorthy, R & Espinosa, HD (2015). Double-tilt in situ TEM holder with multiple electrical contacts and its application in MEMS-based mechanical testing of nanomaterials. Ultramicroscopy 156, 2328.CrossRefGoogle ScholarPubMed
Bonneaux, J & Guymont, M (1999). Study of the order-disorder transition series in AuCu by in-situ temperature electron microscopy. Intermetallics 7, 797805.CrossRefGoogle Scholar
Brintlinger, T, Qi, YI, Baloch, KH, Goldhaber-Gordon, D & Cumings, J (2008). Electron thermal microscopy. Nano Lett 8, 582585.CrossRefGoogle ScholarPubMed
Buffat, PH & Borel, JP (1976). Size effect on the melting temperature of gold particles. Phys Rev A 13, 22872298.CrossRefGoogle Scholar
Burke, MG, Bertali, G, Prestat, E, Scenini, F & Haigh, SJ (2017). The application of in situ analytical transmission electron microscopy to the study of preferential intergranular oxidation in Alloy 600. Ultramicroscopy 176, 4651.CrossRefGoogle Scholar
Butler, EP & Hale, KF (1981). Dynamic Experiments in the Electron Microscope. Practical Methods in Electron Microscopy, vol. 9. Amsterdam: North-Holland.Google Scholar
Candini, A, Richter, N, Convertino, D, Coletti, C, Balestro, F, Wernsdorfer, W, Kläui, M & Affronte, M (2015). Electroburning of few-layer graphene flakes, epitaxial graphene, and turbostratic graphene discs in air and under vacuum. Beilstein J Nanotechnol 6, 711719.CrossRefGoogle ScholarPubMed
Chang, CF, Chen, JY, Huang, CW, Chiu, CH, Lin, TY, Yeh, PH & Wu, WW (2017). Direct observation of dual-filament switching behaviors in Ta2O5-based memristors. Small 13, 17.CrossRefGoogle Scholar
Chen, R, Jungjohann, KL, Mook, WM, Nogan, J & Dayeh, SA (2017). Atomic scale dynamics of contact formation in the cross-section of InGaAs nanowire channels. Nano Lett 17, 21892196.CrossRefGoogle ScholarPubMed
Chung, DDL (1978). Structural studies of graphite intercalation compounds. J Electron Mater 7, 189210.CrossRefGoogle Scholar
Chung, DDL (1980). Graphite-halogens as temperature calibration standards for transmission electron microscopy. Rev Sci Instrum 51, 932934.CrossRefGoogle Scholar
Cremons, DR & Flannigan, DJ (2016). Direct in situ thermometry: Variations in reciprocal-lattice vectors and challenges with the Debye–Waller effect. Ultramicroscopy 161, 1016.CrossRefGoogle ScholarPubMed
Crozier, PA & Datye, AK (2000). Direct observation of reduction of PdO to Pd metal by in situ electron microscopy. Stud Surf Sci Catal 130, 31193124.CrossRefGoogle Scholar
Diaz, RE, Sharma, R, Jarvis, K, Zhang, Q & Mahajan, S (2012). Direct observation of nucleation and early stages of growth of GaN nanowires. J Cryst Growth 341, 16.CrossRefGoogle Scholar
Egerton, RF (2009). Electron energy-loss spectroscopy in the TEM. Rep Prog Phys 72, 16502.CrossRefGoogle Scholar
Egerton, RF, Li, P & Malac, M (2004). Radiation damage in the TEM and SEM. Micron 35, 399409.CrossRefGoogle ScholarPubMed
Fei, L, Lei, S, Zhang, WB, Lu, W, Lin, Z, Lam, CH, Chai, Y & Wang, Y (2016). Direct TEM observations of growth mechanisms of two-dimensional MoS2 flakes. Nat Commun 7, 12206.CrossRefGoogle ScholarPubMed
Fujita, T, Guan, P, McKenna, K, Lang, X, Hirata, A, Zhang, L, Tokunaga, T, Arai, S, Yamamoto, Y, Tanaka, N, Ishikawa, Y, Asao, N, Yamamoto, Y, Erlebacher, J & Chen, M (2012). Atomic origins of the high catalytic activity of nanoporous gold. Nat Mater 11, 775780.CrossRefGoogle ScholarPubMed
Gai, PL, Sharma, R & Ross, FM (2008). Environmental (S)TEM studies of gas–liquid–solid interactions under reaction conditions. MRS Bull 33, 107114.CrossRefGoogle Scholar
Gao, Y, Bando, Y, Liu, Z, Golberg, D & Nakanishi, H (2003). Temperature measurement using a gallium-filled carbon nanotube nanothermometer. Appl Phys Lett 83, 8184.CrossRefGoogle Scholar
Gessinger, GH, Lenel, FV & Ansell, GS (1968). Estimate of the temperature rise of micron-sized silver particles in the electron microscope due to electron-beam heating. J Appl Phys 39, 55935597.CrossRefGoogle Scholar
Gong, NW, Lu, MY, Wang, CY, Chen, Y & Chen, LJ (2008). Au(Si)-filled Β-Ga2O3 nanotubes as wide range high temperature nanothermometers. Appl Phys Lett 92, 14.CrossRefGoogle Scholar
Grinolds, MS, Lobastov, VA, Weissenrieder, J & Zewail, AH (2006). Four-dimensional ultrafast electron microscopy of phase transitions. Proc Natl Acad Sci USA 103, 1842718431.CrossRefGoogle ScholarPubMed
Guo, H, Khan, MI, Cheng, C, Fan, W, Dames, C, Wu, J & Minor, AM (2014). Vanadium dioxide nanowire-based microthermometer for quantitative evaluation of electron beam heating. Nat Commun 5, 15.CrossRefGoogle ScholarPubMed
Han, HL, Melaet, G, Alayoglu, S & Somorjai, GA (2015). In situ microscopy and spectroscopy applied to surfaces at work. ChemCatChem 7, 36253638.CrossRefGoogle Scholar
Hansen, PL, Wagner, JB, Helveg, S, Rostrup-Nielsen, JR, Clausen, BS & Topsøe, H (2002). Atom-resolved imaging of dynamic shape changes in supported copper nanocrystals. Science 295, 20532055.CrossRefGoogle ScholarPubMed
Hansen, TW & Wagner, JB (2016). Controlled Atmosphere Transmission Electron Microscopy. Basel, Switzerland: Springer.CrossRefGoogle Scholar
Harks, PPRML, Mulder, FM & Notten, PHL (2015). In situ methods for Li-ion battery research: A review of recent developments. J Power Sources 288, 92105.CrossRefGoogle Scholar
Hattar, K, Han, J, Saif, T & Robertson, IM (2004). Development and application of a MEMS-based in situ TEM straining device for ultra-fine grained metallic systems. Microsc Microanal 10, 5051.CrossRefGoogle Scholar
He, L & Hull, R (2012). Quantification of electronphonon scattering for determination of temperature variations at high spatial resolution in the transmission electron microscope. Nanotechnology 23, 205705.CrossRefGoogle Scholar
Heinemann, K & Poppa, H (1976). Direct observation of small cluster mobility and ripening. Thin Solid Films 33, 237251.CrossRefGoogle Scholar
Helveg, S, López-Cartes, C, Sehested, J, Hansen, PL, Clausen, BS, Rostrup-Nielsen, JR, Abild-Pedersen, F & Nørskov, JK (2004). Atomic-scale imaging of carbon nanofibre growth. Nature 427, 426429.CrossRefGoogle ScholarPubMed
Holloway, K & Sinclair, R (1988). High-resolution and in situ tem studies of annealing of Ti-Si multilayers. J Less Common Met 140, 139148.CrossRefGoogle Scholar
Ida, K, Sugiyama, Y, Chujyo, Y, Tomonari, M, Tokunaga, T, Sasaki, K & Kuroda, K (2010). In-situ TEM studies of the sintering behavior of copper nanoparticles covered by biopolymer nanoskin. J Electron Microsc 59, 7580.CrossRefGoogle ScholarPubMed
Idrobo, JC, Lupini, AR, Feng, T, Unocic, RR, Walden, FS, Gardiner, DS, Lovejoy, TC, Dellby, N, Pantelides, ST & Krivanek, OL (2018). Temperature measurement by a nanoscale electron probe using energy gain and loss spectroscopy. Phys Rev Lett 120, 095901.CrossRefGoogle ScholarPubMed
Jacobsson, D, Panciera, F, Tersoff, J, Reuter, MC, Lehmann, S, Hofmann, S, Dick, KA & Ross, FM (2016). Interface dynamics and crystal phase switching in GaAs nanowires. Nature 531, 317322.CrossRefGoogle ScholarPubMed
Jeangros, Q, Hansen, TW, Wagner, JB, Damsgaard, CD & He, C (2013). Reduction of nickel oxide particles by hydrogen studied in an environmental TEM. J Mater Sci 48, 28932907.CrossRefGoogle Scholar
Jeangros, Q, Hansen, TW, Wagner, JB, Dunin-Borkowski, RE, Hébert, C, Van Herle, J & Hessler-Wyser, A (2016). Energy-filtered environmental transmission electron microscopy for the assessment of solid–gas reactions at elevated temperature: NiO/YSZ–H2 as a case study. Ultramicroscopy 169, 1121.CrossRefGoogle ScholarPubMed
Kallesøe, C, Wen, C-Y, Mølhave, K, Bøggild, P & Ross, FM (2010). Measurement of local Si-nanowire growth kinetics using in situ transmission electron microscopy of heated cantilevers. Small 6, 20582064.CrossRefGoogle ScholarPubMed
Kamino, T & Saka, H (1993). A newly developed high resolution hot stage and its application to materials characterization. Microsc Microanal Microstruct 4, 127135.CrossRefGoogle Scholar
Keene, BJ (1993). Review of data for the surface tension of pure metals. Int Mater Rev 38, 157192.CrossRefGoogle Scholar
Kim, T, Bae, J, Lee, J-W, Shin, K, Lee, J-H, Kim, M & Yang, C (2015). Temperature calibration of a specimen-heating holder for transmission electron microscopy. Appl Microsc 45, 95100.CrossRefGoogle Scholar
Lagos, MJ & Batson, PE (2018). Thermometry with subnanometer resolution in the electron microscope using the principle of detailed balancing. Nano Lett 18, 45564563.CrossRefGoogle ScholarPubMed
Lan, Y, Wang, H, Chen, G & Ren, Z (2013). Internal temperature calibration at nanoscale on in situ heating high resolution transmission electron microscopy. Microsc Microanal 19, 498499.CrossRefGoogle Scholar
Lee, S, Hippalgaonkar, K, Yang, F, Hong, J, Ko, C, Suh, J, Liu, K, Wang, K, Urban, JJ, Zhang, X, Dames, C, Hartnoll, SA, Delaire, O & Wu, J (2017). Anomalously low electronic thermal conductivity in metallic vanadium dioxide. Science 355, 371374.CrossRefGoogle ScholarPubMed
Martin, CJ & Boyd, JD (1973). A method for calibrating a specimen-heating stage in the electron microscope. J Phys E 6, 2122.CrossRefGoogle Scholar
Mecklenburg, M, Hubbard, WA, White, ER, Dhall, R, Cronin, SB, Aloni, S & Regan, BC (2015). Nanoscale temperature mapping in operating microelectronic devices. Science 347, 629633.CrossRefGoogle ScholarPubMed
Mecklenburg, M, Zutter, B & Regan, BC (2017). Thermometry of silicon nanoparticles. Phys Rev Appl. 9, 014005.CrossRefGoogle Scholar
Mølgaard, P, Willum, T, Birkedal, J & Degn, A (2015). Modeling of temperature profiles in an environmental transmission electron microscope using computational fluid dynamics. Ultramicroscopy 152, 19.CrossRefGoogle Scholar
Nanda, KK, Sahu, SN & Behera, SN (2002). Liquid-drop model for the size-dependent melting of low-dimensional systems. Phys Rev A 66, 132081132088.CrossRefGoogle Scholar
Niekiel, F, Kraschewski, SM, Müller, J, Butz, B & Spiecker, E (2017). Local temperature measurement in TEM by parallel beam electron diffraction. Ultramicroscopy 176, 161169.CrossRefGoogle ScholarPubMed
Ortega, Y, Dieker, C, Jäger, W, Piqueras, J & Fernández, P (2010). Voids, nanochannels and formation of nanotubes with mobile Sn fillings in Sn doped ZnO nanorods. Nanotechnology 21, 225604.CrossRefGoogle ScholarPubMed
Panciera, F, Norton, MM, Alam, SB, Hofmann, S, Mølhave, K & Ross, FM (2016). Controlling nanowire growth through electric field-induced deformation of the catalyst droplet. Nat Commun 7, 12271.CrossRefGoogle ScholarPubMed
Pawlow, O (1910). Ueber den Einflub der Oberflache einer festen Phase auf die latente Warme und die Temperatur des Schmelzens. Zeitschr f Chem und Ind der Kolloide 7, 3739.CrossRefGoogle Scholar
Peng, Z, Somodi, F, Helveg, S, Kisielowski, C, Specht, P & Bell, AT (2012). High-resolution in situ and ex situ TEM studies on graphene formation and growth on Pt nanoparticles. J Catal 286, 2229.CrossRefGoogle Scholar
Picher, M, Mazzucco, S, Blankenship, S & Sharma, R (2015). Vibrational and optical spectroscopies integrated with environmental transmission electron microscopy. Ultramicroscopy 150, 1015.CrossRefGoogle ScholarPubMed
Rackauskas, S, Jiang, H, Wagner, JB, Shandakov, SD, Hansen, TW, Kauppinen, EI & Nasibulin, AG (2014). In situ study of noncatalytic metal oxide nanowire growth. Nano Lett 14, 58105813.CrossRefGoogle ScholarPubMed
Reguer, A, Bedu, F, Nitsche, S, Chaudanson, D, Detailleur, B & Dallaporta, H (2009). Probing the local temperature by in situ electron microscopy on a heated Si3N4 membrane. Ultramicroscopy 110, 6166.CrossRefGoogle Scholar
Reimer, L & Christenhusz, R (1965). Determination of specimen temperature. Lab Invest 14, 11581168.Google ScholarPubMed
Reiss, H, Mirabel, P & Whetten, RL (1988). Capillarity theory for the ‘coexistence’ of liquid and solid clusters. J Phys Chem 92, 72417246.CrossRefGoogle Scholar
Revina, AA, Oksentyuk, EV & Fenin, AA (2007). Synthesis and properties of zinc nanoparticles: The role and prospects of radiation chemistry in the development of modern nanotechnology. Prot Met 43, 554559.CrossRefGoogle Scholar
Roth, JA, Olson, GL, Jacobson, DC & Poate, JM (1990). Kinetics of solid phase epitaxy in thick amorphous Si layers formed by MeV ion implantation. Appl Phys Lett 57, 13401342.CrossRefGoogle Scholar
Sambles, JR (1971). An electron microscope study of evaporating gold particles: The Kelvin equation for liquid gold and the lowering of the melting point of solid gold particles. Proc R Soc A Math Phys 324, 339351.Google Scholar
Sharma, R & Crozier, PA (2005). Environmental transmission electron microscopy in nanotechnology. In Handbook of Microscopy for Nanotechnology, Yao, N & Wang, ZL (Eds.), pp. 531565, Basel, Switzerland: Springer.CrossRefGoogle Scholar
Shen, L, Mecklenburg, M, Dhall, R, Regan, BC & Cronin, SB (2019). Measuring nanoscale thermal gradients in suspended MoS2 with STEM-EELS. Appl Phys Lett 115, 153108.CrossRefGoogle Scholar
Simmons, RO (1970). Use of fcc metals as internal temperature standards in x-ray diffraction. J Appl Phys 41, 22352240.CrossRefGoogle Scholar
Simonsen, SB (2008). In Situ Studies of CeO2-Catalyzed Soot Oxidation by Means of Environmental Transmission Electron Microscopy. Copenhagen: University of Copenhagen.Google Scholar
Simonsen, SB, Agersted, K, Hansen, KV, Jacobsen, T, Wagner, JB, Hansen, TW & Kuhn, LT (2015). Environmental TEM study of the dynamic nanoscaled morphology of NiO/YSZ during reduction. Appl Catal A Gen 489, 147154.CrossRefGoogle Scholar
Simonsen, SB, Chorkendorff, I, Dahl, S, Skoghlundh, M, Sehested, J & Helveg, S (2010). Direct observations of oxygen-induced platinum nanoparticle ripening studied by in situ TEM. J. Am. Chem. Soc. 132, 79687975.CrossRefGoogle ScholarPubMed
Simonsen, SB, Chorkendorff, I, Dahl, S, Skoglundh, M & Helveg, S (2016). Coarsening of Pd nanoparticles in an oxidizing atmosphere studied by in situ TEM. Surf Sci 648, 278283.CrossRefGoogle Scholar
Simonsen, SB, Chorkendorff, I, Dahl, S, Skoglundh, M, Meinander, K, Jensen, TN, Lauritsen, JV & Helveg, S (2012). Effect of particle morphology on the ripening of supported Pt nanoparticles. J Phys Chem C 116, 56465653.CrossRefGoogle Scholar
Simonsen, SB, Dahl, S, Johnson, E, Helveg, S & Johnson, E (2009). Direct observations of CeO2-catalyzed soot oxidation at the nano-scale using environmental transmission electron microscopy. SAE Int J Mater Manuf 1, 199203.CrossRefGoogle Scholar
Simonsen, SB, Shao, J & Zhang, W (2017). Structural evolution during calcination and sintering of a (La0.6Sr0.4)0.99CoO3−δ nanofiber prepared by electrospinning. Nanotechnology 28, 265402.CrossRefGoogle Scholar
Sinclair, R (2013). In situ high-resolution transmission electron microscopy of material reactions. MRS Bull 38, 10651071.CrossRefGoogle Scholar
Sinclair, R & Parker, MA (1986). High-resolution transmission electron microscopy of silicon re-growth at controlled elevated temperatures. Nature 322, 531533.CrossRefGoogle Scholar
Stach, EA, Hull, R, Bean, JC, Jones, KS & Nejim, A (1998). In situ studies of the interaction of dislocations with point defects during annealing of ion implanted Si/SiGe/Si (001) heterostructures. Microsc Microanal 4, 294307.CrossRefGoogle ScholarPubMed
Steinhauer, S, Wang, Z, Zhou, Z, Krainer, J, Köck, A, Nordlund, K, Djurabekova, F, Grammatikopoulos, P & Sowwan, M (2017). Probing electron beam effects with chemoresistive nanosensors during in situ environmental transmission electron microscopy. Appl Phys Lett 110, 094103.CrossRefGoogle Scholar
Suh, IK, Ohta, H & Waseda, Y (1988). High-temperature thermal expansion of six metallic elements measured by dilatation method and X-ray diffraction. J Mater Sci 23, 757760.CrossRefGoogle Scholar
Swann, PR (1978). Specimen device for in situ experiments. In Ninth International Congress on Electron Microscopy, Sturgess, JM (Ed.), pp. 319329. Toronto: The Microscopy Society of Canada.Google Scholar
Taheri, ML, Stach, EA, Arslan, I, Crozier, PA, Kabius, BC, Lagrange, T, Minor, AM, Takeda, S, Tanase, M, Wagner, JB & Sharma, R (2016). Current status and future directions for in situ transmission electron microscopy. Ultramicroscopy 170, 8695.CrossRefGoogle ScholarPubMed
Takaoka, A & Katsumi, U (1990). Temperature measurement on micro-area of specimen in TEM by using thermal diffuse scattering effect. J Electron Microsc 39, 6970.Google Scholar
Takashi, O, Daisuke, S, Kenji, H & Jun-Ichi, K (1995). Evaluation of thermal diffuse electron scattering in Au with the imaging plate. Mater Trans 36, 686688.Google Scholar
Thornburg, DD & Wayman, CM (1973). Specimen temperature increases during transmission electron microscopy. Phys Status Solidi 15, 449453.CrossRefGoogle Scholar
Valdrè, U & Goringe, MJ (1965). A liquid helium cooled goniometer stage for an electron microscope. J Sci Instrum 42, 268269.CrossRefGoogle Scholar
Vendelbo, SB, Kooyman, PJ, Creemer, JF, Morana, B, Mele, L, Dona, P, Nelissen, BJ & Helveg, S (2013). Method for local temperature measurement in a nanoreactor for in situ high-resolution electron microscopy. Ultramicroscopy 133, 7279.CrossRefGoogle Scholar
Vijayan, S & Aindow, M (2019). Temperature calibration of TEM specimen heating holders by isothermal sublimation of silver nanocubes. Ultramicroscopy 196, 142153.CrossRefGoogle ScholarPubMed
Viswanath, B & Ramanathan, S (2013). Direct in situ observation of structural transition driven actuation in VO2 utilizing electron transparent cantilevers. Nanoscale 5, 7484–92.CrossRefGoogle ScholarPubMed
Walsh, MJ, Yoshida, K, Gai, PL & Boyes, ED (2009). In-situ heating studies of gold nanoparticles in an aberration corrected transmission electron microscope. J Phys Conf Ser 241, 012058.CrossRefGoogle Scholar
Wang, CM, Kwak, JH, Kim, DH, Szanyi, J, Sharma, R, Thevuthasan, S & Peden, CHF (2006). Morphological evolution of Ba(NO3)2 supported on α-Al2O3(0001): An in situ TEM study. J Phys Chem B 110, 1187811883.CrossRefGoogle Scholar
Wang, ZL (2003). New developments in transmission electron microscopy for nanotechnology. Adv Mater 15, 14971514.CrossRefGoogle Scholar
Wang, ZL, Petroski, JM, Green, TC & El-Sayed, MA (1998). Shape transformation and surface melting of cubic and tetrahedral platinum nanocrystals. J Phys Chem B 102, 61456151.CrossRefGoogle Scholar
Watanabe, H (1956). Experimental evidance for the collective nature of the characteristic energy loss of electron in solids – studies on the dispersion relation of plasma frequency. J Phys. Soc Jpn 11, 112119.CrossRefGoogle Scholar
Winterstein, J, Lin, PA & Sharma, R (2014). Measurement of local specimen temperature under flowing gas ambient in the environmental scanning transmission electron microscope (ESTEM) using diffraction. Microsc Microanal 20, 15961597.CrossRefGoogle Scholar
Winterstein, JP, Lin, PA & Sharma, R (2015). Temperature calibration for in situ environmental transmission electron microscopy experiments. Microsc Microanal 21, 17.CrossRefGoogle ScholarPubMed
Yang, Y, Fu, Z, Zhang, X, Cui, Y, Xu, F, Li, T & Wang, Y (2019). In situ TEM mechanical characterization of one-dimensional nanostructures via a standard double-tilt holder compatible MEMS device. Ultramicroscopy 198, 4348.CrossRefGoogle Scholar
Yonezawa, T (2009). In-situ observation of silver nanoparticle ink at high temperature. Biomed Mater Eng 19, 2934.Google ScholarPubMed
Yoshida, H, Kuwauchi, Y, Jinschek, JR, Sun, K, Tanaka, S, Kohyama, M, Shimada, S, Haruta, M & Takeda, S (2012). Visualizing gas molecules interacting with supported nanoparticulate catalysts at reaction conditions. Science 335, 317319.CrossRefGoogle ScholarPubMed
Zhang, L, He, M, Hansen, TW, Kling, J, Jiang, H, Kauppinen, EI, Loiseau, A & Wagner, JB (2017 a). Growth termination and multiple nucleation of single-wall carbon nanotubes evidenced by in situ transmission electron microscopy. ACS Nano 11, 44834493.CrossRefGoogle ScholarPubMed
Zhang, Q, He, X, Shi, J, Lu, N, Li, H, Yu, Q, Zhang, Z, Chen, L-Q, Morris, B, Xu, Q, Yu, P, Gu, L, Jin, K & Nan, C-W (2017 b). Atomic-resolution imaging of electrically induced oxygen vacancy migration and phase transformation in SrCoO2.5-σ. Nat Commun 8, 104.CrossRefGoogle ScholarPubMed