Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-04T22:45:53.711Z Has data issue: false hasContentIssue false

Microscopy and Microanalysis of Hematological Parameters in Common Carp, Cyprinus carpio, Inhabiting a Polluted Lake in North East India

Published online by Cambridge University Press:  25 October 2012

Bashida Massar
Affiliation:
Department of Zoology, St. Anthony's College, Shillong-1, Meghalaya, India
Sudip Dey*
Affiliation:
Electron Microscope Division, Sophisticated Analytical Instrument Facility, North Eastern Hill University, Shillong-22, Meghalaya, India
R. Barua
Affiliation:
Department of Physics, Tezpur University, Tezpur, Assam, India
K. Dutta
Affiliation:
Department of Zoology, Gauhati University, Guwahati-14, Assam, India
*
*Corresponding author. E-mail: sudipdey.dey1@gmail.com
Get access

Abstract

Optical and scanning electron microscopy (SEM) of red blood cells (RBCs) of common carp, Cyprinus carpio, inhabiting a polluted lake in Northeast India revealed a number of abnormalities. About 7% of the RBC showed the presence of a micronucleus, besides the presence of some bi-nucleated and abnormally shaped nuclei. RBCs, white blood cells, and hemoglobin content were found to be reduced significantly as compared to the control. SEM showed the presence of spherocytes, early stages of echinocytes, cytoplasmic blebbing, erythrocytes with contraction from one side, abnormal shape of erythrocytes (hexagonal/pentagonal/tetragonal), development of lobopodial projections, cell rupture, membrane internalization, and formation of ring-shaped RBC. Energy dispersive X-ray spectroscopy (EDS) showed the presence of a considerable percentage of silicon and lead in erythrocytes of the fish collected from the polluted lake, in contrast to a negligible concentration of the two elements in control fish. Significance of the study in relation to fish health in a polluted body of water and the importance of SEM, EDS, and light microscopy in utilizing hematological parameters as pollution indicators are discussed.

Type
Biological Applications
Copyright
Copyright © Microscopy Society of America 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adedeji, O.B., Adeyemo, O.K. & Agbede, S.A. (2009). Effects of diazinon on blood parameters in the African catfish (Clarias gariepinus). African J Biotechnol 8(16), 39403946.Google Scholar
Agarwal, K. & Chaturvedi, L.D. (1995). Anomalies in blood corpuscles of Heteropneustes fossilis induced by alachlor and rogor. Adv Bios 14, 7380.Google Scholar
Ali, F.K., El-Shehawi, A.M. & Seehy, M.A. (2008). Micronucleus test in fish genome. A sensitive monitor for aquatic pollution. African J Biotechnol 7(5), 606612.Google Scholar
Alwan, S.F., Hadi, A.A. & Shokr, A.E. (2009). Alterations in hematological parameters of fresh water fish, Tilapia zillii, exposed to aluminum. J Sci Its Appl 3, 1219.Google Scholar
Andreikenaite, L., Barsiene, J. & Vosyliene, M.Z. (2007). Studies of micronuclei and other nuclear abnormalities in blood of rainbow trout (Oncorhynchus mykiss) treated with heavymetal mixture and road maintenance salts. Acta Zool Lituanica 17(3), 213219.CrossRefGoogle Scholar
Barsiene, J., Dedonyte, V., Rybakovas, A., Andreikenaite, L. & Andersen, O.K. (2006). Investigation of micronuclei and other nuclear abnormalities in peripheral blood and kidney of marine fish treated with crude oil. Aquatic Toxicol 78, 99104.CrossRefGoogle ScholarPubMed
Chauhan, R.R.S., Saxena, K.K. & Kumar, S. (1994). Rogor induced haematological alterations in Cyprinus carpio . Adv Bios 13, 5762.Google Scholar
Clivapil, M., Stankova, L. & Malshet, V. (1996). Lipid peroxidation as one of the mechanisms of silica fibrogenicity?: 1. Study with erythrocytes. Env Res 11(1), 7888.Google Scholar
Dey, S., Arjun, J. & Das, M. (1999). Erythrocyte membrane dynamics in albino mice offspring born to females with lead-induced toxicity during pregnancy: A scanning electron microscopic study. Biomed Lett 59, 1566.Google Scholar
Dey, S., Baul, T.S.B., Roy, B. & Dey, D. (1989). A new rapid method of air-drying for scanning electron microscopy using tetra-methyl silane. J Microsc 156, 259261.CrossRefGoogle Scholar
Dey, S., Kharbuli, S.M., Chakraborty, R., Bhattacharyya, S.P. & Goswami, U.C. (2009). Toxic effect of environmental acid-stress on the sperm of a Hill-stream fish Devario aequipinnatus: A scanning electron microscopic evaluation. Microsc Res Techniq 72, 7678.CrossRefGoogle ScholarPubMed
Domingos, F.X.V., Assis, H.C.S., Silva, M.D., Damian, R.C., Almeida, A.I.M., Cestari, M.M., Randi, M.A.F. & Ribeiro, C.A.O. (2009). Anthropic impact of evaluation of two Brazilian estuaries trough biomarkers in fish. J Braz Soc Ecotoxicol 4(1-3), 2130.CrossRefGoogle Scholar
Duthie, G.G. & Tort, L. (1985). Effect of dorsal aortic cannulation on the respiration and hematology of the Mediterranean dog-fish Scyliorhinus canicula . Comp Biochem Physiol A 81, 879883.CrossRefGoogle Scholar
Fillion, M., Mergler, D., Sousa Passos, J.C., Larribe, F., Lemire, M. & Guimarães, J.R.D. (2006). A preliminary study of mercury exposure and blood pressure in the Brazilian Amazon. Environ Health: Glob Access Sci Sour 5(29), 19.CrossRefGoogle ScholarPubMed
Fontanetti, C.S., Christofoletti, C.A., Pinheiro, T.G., Souza, T.S. & Pedro-Escher, J. (2010). Microscopy as a tool in toxicological evaluations. In Microscopy: Science, Technology, Applications and Education, Méndez-Vilas, A. & Díaz, J. (Eds.), vol. 2, pp. 10011007. Badajoz, Spain: Formatex.Google Scholar
Gill, T.S. & Epple, A. (1993). Stressed-related changes in the hematological profile of the American eel, Anguilla rostrata . Ecotoxicol Environ Saf 25, 227235.CrossRefGoogle Scholar
Goel, K.A., Gupta, k. & Sharma, M.L. (1985). Haematological characteristics of Heteropneustes fossilis under the stress of zinc. Indian J Fish 36, 186188.Google Scholar
Goel, K.A. & Sharma, S.D. (1987). Some haematological characteristics of Clarias batrachus under metallic stress of arsenic. Comp Physiol Ecol 12, 6366.Google Scholar
Haux, C. & Larsson, A. (1982). Influence of inorganic lead on the biochemical blood composition in the rainbow trout, Salmo gairdneri. Ecotoxicol Environ Saf 6, 2834.CrossRefGoogle ScholarPubMed
Hesser, E.F. (1960). Methods for routine on fish hematology. Progr Fish Culturist 22, 164171.CrossRefGoogle Scholar
Holcombe, G.W., Benoit, D.A., Leonard, E.N. & McKim, J.W. (1976). Long-term effects of lead exposure on three generations of brook trout, Salvelinus fontinalis. J Fish Res Bd Canada 33, 17311741.CrossRefGoogle Scholar
Homechaudhuri, S. & Banerjee, S. (1991). Scanning electron microscopic observations on the blood cells of common carp (Cyprinus carpio) and catfish (Heteropneustes fossilis) under piscicide toxicity. Asian Fisheries Sci 4, 263267.Google Scholar
Johansson-Sjobeck, M.L. & Larsson, A. (1979). Effects of inorganic lead on delta-aminolevulinic acid dehydratase activity and haematological variables in the rainbow trout, Salmo gairdneri. Arch Environ Contam Toxicol 8, 419431.CrossRefGoogle ScholarPubMed
Katalay, S. & Parlak, H. (2004). The effects of pollution on haematological parameters of Black Goby (Gobius niger L., 1758) in Foça and Aliağa Bays. E.U. J Fisheries Aquatic Sci 21(1-2), 113117.Google Scholar
Kayode, S.J. & Shamusideen, S.A. (2010). Haematological studies of Oreochromis niloticus exposed to diesel and drilling fluid in Lagos, Nigeria. Int J Biodiv Conserv 2(5), 130133.Google Scholar
Kirschbaum, A.A., Seriani, R., Pereira, C.D.S., Assunção, A., Abessa, D.M.S., Rotundo, M.M. & Ranzani-Paiva, M.J.T. (2009). Cytogenotoxicity biomarkers in fat snook Centropomus parallelus from Cananéia and São Vicente estuaries, SP, Brazil. Gen Molec Biol 32(1), 151154.CrossRefGoogle ScholarPubMed
Krishna, G. & Hayashi, M. (2000). In vivo rodent micronucleus assay: Protocol, conduct and data interpretation. Mut Res 455, 155166.CrossRefGoogle ScholarPubMed
Larsson, A, Haux, C. & Sjobeck, M.L. (1985). Fish physiology and metal pollution: Results and experiences from laboratory and field studies. Ecotoxicol Environ Safety 9, 250281.Google Scholar
Luca, G.D., Gugliotta, T., Parisi, G., Romano, P., Geraci, A., Romano, O., Scuteri, A. & Romano, L. (2007). Effects of nickel on human and fish red blood cells. Biosci Rep 27, 265273.CrossRefGoogle ScholarPubMed
Maheswaran, R., Devapaul, A., Muralidharan, S., Velmurugan, B. & Ignacimuthu, S. (2008). Haematological studies of fresh water fish, Clarias batrachus (L.) exposed to mercuric chloride. Int J Integrative Biol 2(1), 4954.Google Scholar
Massar, B., Dey, S. & Dutta, K. (2011). An electron microscopic analysis on the ultra structural abnormalities in sperm of the common carp, Cyprinus carpio L. inhabiting a polluted lake, Umiam (Meghalaya, India). Microsc Res Techniq 74(11), 9981005.Google Scholar
Matasin, Z., Orescanin, V., Juckic, V.V., Nejedli, S., Matasin, M. & Gajger, I.T. (2011). Heavy metals in mud, water and cultivated grass carp (Ctenopharyngodon idella) and big head carp (Hypophthalmichthys molitrix) from Croatia. J Anim Vet Adv 10(8), 10691072.Google Scholar
McFarland, W.N. & Klontz, G.W. (1969). Anasthesia on fishes. Fed Proc Fem Am Soc Exp Biol 28, 1535. Google Scholar
Naskar, R., Sen, N.S. & Ahmad, M.F. (2006). Aluminium toxicity induced poikilocytosis in an air-breathing teleost, Clarias batrachus (Linn). Indian J Exp Biol 44, 8385.Google Scholar
Nath, R. (1996). Effect of fenvalerate on blood parameters of fish Heteropneustes fossilis (Bloch.). Environ Ecol 14, 710712.Google Scholar
Nigam, A. & Ayyagari, A. (2008). Lab Manual in Biochemistry, Immunology and Biotechnology. West Pater Nagar, New Delhi, India: Tata McGraw-Hill Publishing Company Limited.Google Scholar
Normann, C.A.B.M., Menezes, M.L.M., Reggi, R., Muller, J. & Dolder, M.A.H. (2002). Metais pesados em Tecidos de Peixes do Rio dos Sinos. Ciência em Movimento IV (8), 3944.Google Scholar
Normann, C.A.B.M., Moreira, J.C.F. & Cardoso, V.V. (2008). Micronuclei in red blood cells of armored catfish Hypostomus plecotomus exposed to potassium Dichromate. African J Biotechnol 7(7), 893896.Google Scholar
Palikova, M. & Navratil, S. (2001). Occurrence of Anguillicola crassus in the water reservoir Korycany (Czech Republic) and its influence on the health condition and haematological indices of eels. Acta Vet Brno 70, 443449.CrossRefGoogle Scholar
Panigrahi, A.K. & Misra, B.N. (1978). Toxicological effects of mercury on a freshwater fish, Anabas scandens, CUV. & VAL. and their ecological implications. Environ Pollut 16, 3139.Google Scholar
Parma, M.J., Loteste, A., Campana, M. & Bacchetta, C. (2007). Changes of hematological parameters in Prochilodus lineatus (Pisces, Prochilodontidae) exposed to sublethal concentration of cypermethrin. J Environ Biol 28(1), 147149.Google Scholar
Radhakrishnan, M.V. (2010). Immunological effect of cadmium in Heteropneustes fossilis a Bloch. Global Veterinaria 4(6), 544547.Google Scholar
Rajguru, U., Dey, S., Mallick, M. & Goswami, U.C. (2011). Bleached sulphite pulp mill effluents adversely affect cellular and subcellular features of Anabas testudineus fish tissues: An electron microscopic analysis. Adv Microsc Res 6(1), 7380.Google Scholar
Reddy, M.P. & Bashamohideen, M. (1989). Fenvalerate and cypermethrin induced changes in the haematological parameters of Cyprinus carpio . Acta Hydrochim Hydrobiol 17, 101107.CrossRefGoogle Scholar
Rhodes, J.R. (1974). Energy-dispersive X-ray spectrometry for multielement pollution analysis. IEEE Trans Nucl Sci 21(1), 608617.CrossRefGoogle Scholar
Şahan, A., Altun, T., Cevik, F., Cengizler, I., Nevsat, E. & Genc, E. (2007). Comparative study of some haematological parameters in European eel (Anguilla Anguilla L., 1758) caught from different regions of Ceyhan River (Adana, Turkey). EU J Fish Aqua Sci 24, 167171.Google Scholar
Şahan, A. & Cengizler, I. (2002). Determination of some heamatological parameters in spotted barb (Capoeta barroisi, 1894) and roach (Rutilus rutilus, 1758) living in Seyhan River (Adana City Region), (in Turkish). Turk J Vet Anim Sci 26, 849858.Google Scholar
Sánchez-Galán, S., Linde, A.R., Ayllón, F. & Garcia-Vazquez, E. (2001). Induction of micronuclei in eels (Anguilla Anguilla L.) by heavy metals. Ecotoxicol Environ Safety 49, 139143.CrossRefGoogle ScholarPubMed
Sawhney, A.K. & Johal, M.S. (2000). Erythrocyte alterations induced by malathion in Channa punctatus (Bloch). Bull Environ Contam Toxicol 64, 398405.CrossRefGoogle ScholarPubMed
Saxena, K.K. & Seth, N. (2002). Toxic effects of cypermethrin on certain hematological aspects of fresh water fish Channa punctatus . Bull Environ Contam Toxicol 69, 364369.CrossRefGoogle ScholarPubMed
Schmidt, W. (1975). The micronucleus test. Mutation Res 31(1), 915.CrossRefGoogle Scholar
Seriani, R., Moreira, L.B., Abessa, D.M.S., Abujamara, L.D., Carvalho, N.S.B., Maranho, L.A., Kirschbaum, A.A. & Ranzani-Paiva, M.J.T. (2010). Hematological analysis of Micropogonias furnieri, Desmarest, 1823, Scianidae, from two estuaries of Baixada Santista, Sao Pulo, Brazil. Brazilian J Oceanogr 58(IV SOB), 8792.CrossRefGoogle Scholar
Seriani, R., Ranzani-Paiva, M.J.T., Silva-Souza, A.T. & Napoleão, S.R. (2011). Hematology, micronuclei and nuclear abnormalities in fishes from São Franciscoriver, Minas Gerais state, Brazil. Acta Scientiarum 33(1), 107112.Google Scholar
Shah, S.L. & Altindag, A. (2004). Haematological parameters of tench (Tinca tinca L.) after acute and chronic exposure to lethal and sublethal mercury treatments. Bull Environ Contam Toxicol 73, 911918.CrossRefGoogle ScholarPubMed
Shah, S.L. & Altindag, A. (2005). Alterations in the immunological parameters of tench (Tinca tinca L.) after acute and chronic exposure to lethal and sublethal treatments with mercury, cadmium and lead. Turk J Vet Anim Sci 29, 11631168.Google Scholar
Singh, P.B. & Tandon, P.K. (2009). Effect of water pollution on hematological parameters of fish, Wallago attu . Res Environ Life Sci 2(4), 211214.Google Scholar
Svensson, B., Nilsson, A., Jonsson, E., Schutz, A., Akesson, B. & Hagmar, L. (1995). Fish consumption and exposure to persistent organochlorine compounds, mercury, selenium and methylamines among Swedish fishermen. Scand J Work Environ Health 21, 96105.CrossRefGoogle ScholarPubMed
Svoboda, M., Luskova, V., Drastichova, J. & Zlabek, V. (2001). The effect of diazinon on haematological indices of common carp (Cyprinus carpio L.). Acta Vet Brno 70, 457465.CrossRefGoogle Scholar
Tewari, H., Gill, T.S. & Pant, J. (1987). Impact of chronic lead poisoning on the haematological and biochemical profiles of a fish, Barbus conchonius . Bull Environ Contam Toxicol 38, 748752.CrossRefGoogle ScholarPubMed
Tung, J.W. (2004). Determination of metal components in marine sediments using energy-dispersive X-ray fluorescence (ED-XRP) spectrometry. Ann Chim 94(11), 837846.Google Scholar
Uluköy, G. & Timur, M. (1993). A study on observation of haematological and histopathological changes occurred from some pesticides in different concentrations in pikeperch (Stizostedion lucioperca L. 1758) (in Turkish). J Fish Aquatic Sci 10, 3554.Google Scholar
Witeska, M. & Kosciuk, B. (2003). Changes in common carp blood after short-term zinc exposure. Environ Res Public Health 2, 456462.Google Scholar
Zhao, Y., Sun, X., Zhang, G., Trewyn, B.G., Slowing, I.I. & Lin, V.S. (2011). Interaction of mesoporous silica nano particles with human red blood cell membrane: Size and surface effects. ACS Nano 5(2), 13661375.Google Scholar