Hostname: page-component-7bb8b95d7b-pwrkn Total loading time: 0 Render date: 2024-09-13T06:17:53.210Z Has data issue: false hasContentIssue false

A Novel Sample Preparation Method That Enables Nucleic Acid Analysis from Ultrathin Sections

Published online by Cambridge University Press:  21 March 2013

Vincent P. Klink*
Affiliation:
Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA
Giselle Thibaudeau
Affiliation:
Institute for Imaging & Analytical Technologies, Mississippi State University, Mississippi State, MS 39762, USA
Ronald Altig
Affiliation:
Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA
*
*Corresponding author. E-mail: vklink@biology.msstate.edu
Get access

Abstract

The ability to isolate and perform nucleic acid analyses of individual cells is critical to studying the development of various cell types and structures. We present a novel biological sample preparation method developed for laser capture microdissection-assisted nucleic acid analysis of ultrathin cell/tissue sections. We used cells of the mitotic bed of the tadpole teeth of Lithobates sphenocephalus (Southern Leopard Frog). Cells from the mitotic beds at the base of the developing teeth series were isolated and embedded in the methacrylate resin, Technovit® 9100®. Intact cells of the mitotic beds were thin sectioned and examined by bright-field and transmission electron microscopy. The cytological and ultrastructural anatomy of the immature and progressively more mature tooth primordia appeared well preserved and intact. A developmental series of tooth primordia were isolated by laser capture microdissection (LCM). Processing of these cells for RNA showed that intact RNA could be isolated. The study demonstrates that Technovit® 9100® can be used as an embedding medium for extremely small tissues and from individual cells, a prerequisite step to LCM and nucleic acid analyses. A relatively small amount of sample material was needed for the analysis, which makes this technique ideal for cell-specific analyses when the desired cells are limited in quantity.

Type
Equipment and Techniques Development: Biological
Copyright
Copyright © Microscopy Society of America 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altig, R. & Pace, W.L. (1974). Scanning electron photomicrographs of tadpole labial teeth. J Herpetology 8, 247251.CrossRefGoogle Scholar
Asano, T., Masumura, T., Kusano, H., Kikuchi, S., Kurita, A., Shimada, H. & Kadowaki, K. (2002). Construction of a specialized cDNA library from plant cells isolated by laser capture microdissection: Toward comprehensive analysis of the genes expressed in the rice phloem. Plant J 32, 401408.CrossRefGoogle ScholarPubMed
Becker, I., Becker, K.F., Röhrl, M.H., Minkus, G., Schütze, K. & Höfler, H. (1996). Single-cell mutation analysis of tumors from stained histologic slides. Lab Invest 75, 801807.Google ScholarPubMed
Bernsen, M.R., Dijkman, H.B., de Vries, E., Figdor, C.G., Ruiter, D.J., Adema, G.J. & van Muijen, G.N. (1998). Identification of multiple mRNA and DNA sequences from small tissue samples isolated by laser-assisted microdissection. Lab Invest 78, 12671273.Google ScholarPubMed
Bhattacharya, S.H., Gal, A.A. & Murray, K.K. (2003). Laser capture microdissection MALDI for direct analysis of archival tissue. J Proteome Res 2, 9598.CrossRefGoogle ScholarPubMed
Chiang, M.K. & Melton, D.A. (2003). Single-cell transcript analysis of pancreas development. Developmental Cell 4, 383393.CrossRefGoogle ScholarPubMed
Dalmas, D.A., Scicchitano, M.S., Chen, Y., Kane, J., Mirabile, R., Schwartz, L.W., Thomas, H.C. & Boyce, R.W. (2008). Transcriptional profiling of laser capture microdissected rat arterial elements: Fenoldopam-induced vascular toxicity as a model system. Toxicol Pathol 36, 496519.CrossRefGoogle ScholarPubMed
Dando, R., Dvoryanchikov, G., Pereira, E., Chaudhari, N. & Roper, S.D. (2012). Adenosine enhances sweet taste through A2B receptors in the taste bud. J Neurosci 32, 322330.CrossRefGoogle ScholarPubMed
Emmert-Buck, M.R., Bonner, R.F., Smith, P.D., Chuaqui, R.F., Zhuang, Z., Goldstein, S.R., Weiss, R.A. & Liotta, L.A. (1996). Laser capture microdissection. Science 274, 9981001.CrossRefGoogle ScholarPubMed
Emmert-Buck, M.R., Gillespie, J.W., Paweletz, C.P., Ornstein, D.K., Basrur, V., Appella, E., Wang, Q.H., Huang, J., Hu, N., Taylor, P. & Petricoin, E.F. 3rd (2000). An approach to proteomic analysis of human tumors. Mol Carcinog 27, 158165.3.0.CO;2-2>CrossRefGoogle ScholarPubMed
Goldsworthy, S.M., Stockton, P.S., Trempus, C.S., Foley, J.F. & Maronpot, R.R. (1999). Effects of fixation on RNA extraction and amplification from laser capture microdissected tissue. Mol Carcinog 25, 8691.3.0.CO;2-4>CrossRefGoogle ScholarPubMed
Hedrum, A., Pontén, F., Ren, Z., Lundeberg, J., Pontén, J. & Uhlén, M. (1994). Sequence-based analysis of the human p53 gene based on microdissection of tumor biopsy samples. Biotechniques 17, 118–119, 122–124, 126–129.Google ScholarPubMed
Hölscher, D. & Schneider, B. (2007). Laser microdissection and cryogenic nuclear magnetic resonance spectroscopy: An alliance for cell type-specific metabolite profiling. Planta 225, 763770.CrossRefGoogle ScholarPubMed
Isenberg, G., Bielser, W., Meier-Ruge, W. & Remy, E. (1976). Cell surgery by laser micro-dissection: a preparative method. J Microsc 107, 1924.CrossRefGoogle ScholarPubMed
Jessani, N., Humphrey, M., McDonald, W.H., Niessen, S., Masuda, K., Gangadharan, B., Yates, J.R. 3rd, Mueller, B.M. & Cravatt, B.F. (2004). Carcinoma and stromal enzyme activity profiles associated with breast tumor growth in vivo. Proc Natl Acad Sci USA 101, 1375613761.CrossRefGoogle ScholarPubMed
Jessani, N., Liu, Y., Humphrey, M. & Cravatt, B.F. (2002). Enyzme activity profiles of the secreted and membrane proteome that depict cancer cell invasiveness. Proc Natl Acad Sci USA 99, 1033510340.CrossRefGoogle Scholar
Jonsson, N. & Lagerstedt, S. (1957). Demonstration of ribonuclease activity in sections from carnoy fixed rat pancreas. Experientia 13, 321323.CrossRefGoogle ScholarPubMed
Jonsson, N. & Lagerstedt, S. (1958). Losses of nucleic acid derivatives from fixed tissue during flattening of paraffin sections on water. Experientia 14, 157159.CrossRefGoogle ScholarPubMed
Klink, V.P., Hosseini, P., Matsye, P., Alkharouf, N. & Matthews, B.F. (2009). A gene expression analysis of syncytia laser microdissected from the roots of the Glycine max (soybean) genotype PI 548402 (Peking) undergoing a resistant reaction after infection by Heterodera glycines (soybean cyst nematode). Plant Mol Biol 71, 525567.CrossRefGoogle ScholarPubMed
Klink, V.P., MacDonald, M., Alkharouf, N. & Matthews, B.F. (2005). Laser capture microdissection (LCM) and expression analyses of Glycine max (soybean) syncytium containing root regions formed by the plant pathogen Heterodera glycines (soybean cyst nematode). Plant Mol Biol 59, 969983.CrossRefGoogle ScholarPubMed
Klink, V.P., Overall, C.C., Alkharouf, N., MacDonald, M.H. & Matthews, B.F. (2007). Laser capture microdissection (LCM) and comparative microarray expression analysis of syncytial cells isolated from incompatible and compatible soybean roots infected by soybean cyst nematode (Heterodera glycines). Planta 226, 13891409.CrossRefGoogle ScholarPubMed
Liu, Y., Patricelli, M.P. & Cravatt, B.F. (1999). Activity-based protein profiling: The serine hydrolases. Proc Natl Acad Sci USA 96, 1469414699.CrossRefGoogle ScholarPubMed
Matsye, P.D., Kumar, R., Hosseini, P., Jones, C.M., Tremblay, A., Alkharouf, N.W., Matthews, B.F. & Klink, V.P. (2011). Mapping cell fate decisions that occur during soybean defense responses. Plant Mol Biol 77, 513528.CrossRefGoogle ScholarPubMed
Meier-Ruge, W., Bielser, W., Remy, E., Hillenkamp, F., Nitsche, R. & Unsold, R. (1976). The laser in the Lowry technique for microdissection of freeze-dried tissue slices. Histochem J 8, 387401.CrossRefGoogle ScholarPubMed
Nair, K.K. (1958). The effect of some common fixatives on the enzymatic activity of ribonuclease. Experientia 14, 172173.CrossRefGoogle ScholarPubMed
Nishimoto, K., Rigsby, C.S, Wang, T., Mukai, K., Gomez-Sanchez, C.E., Rainey, W.E. & Seki, T. (2012). Transcriptome analysis reveals differentially expressed transcripts in rat adrenal zona glomerulosa and zona fasciculata. Endocrinology 153, 17551763.CrossRefGoogle ScholarPubMed
Nonn, L., Vaishnav, A., Gallagher, L. & Gann, P.H. (2010). mRNA and micro-RNA expression analysis in laser-capture microdissected prostate biopsies: Valuable tool for risk assessment and prevention trials. Exp Mol Pathol 88, 4551.CrossRefGoogle ScholarPubMed
Ornstein, D.K., Gillespie, J.W., Paweletz, C.P., Duray, P.H., Herring, J., Vocke, C.D., Topalian, S.L., Bostwick, D.G., Linehan, W.M., Petricoin, E.F. 3rd & Emmert-Buck, M.R. (2000). Proteomic analysis of laser capture microdissected human prostate cancer and in vitro prostate cell lines. Electrophoresis 21, 22352242.3.0.CO;2-A>CrossRefGoogle ScholarPubMed
Schad, M., Mungur, R., Fiehn, O. & Kehr, J. (2005). Metabolic profiling of laser microdissected vascular bundles of Arabidopsis thaliana. Plant Methods 1, 2.CrossRefGoogle ScholarPubMed
Schütze, K. & Lahr, G. (1998). Identification of expressed genes by laser-mediated manipulation of single cells. Nat Biotechnol 16, 737742.CrossRefGoogle ScholarPubMed
Sgroi, D.C., Teng, S., Robinson, G., LeVangie, R., Hudson, J.R. Jr. & Elkahloun, A.G. (1999). In vivo gene expression profile analysis of human breast cancer progression. Cancer Res 59, 56565661 Google ScholarPubMed
Tadros, Y., Ruiz-Deya, G., Crawford, B.E., Thomas, R. & Abdel-Mageed, A.B. (2003). In vivo proteomic analysis of cytokine expression in laser capture-microdissected urothelial cells of obstructed ureteropelvic junction procured by laparoscopic dismembered pyeloplasty. J Endourol 17, 333336.CrossRefGoogle ScholarPubMed
Tam, A.S., Foley, J.F., Devereux, T.R., Maronpot, R.R. & Massey, T.E. (1999). High frequency and heterogeneous distribution of p53 mutations in aflatoxin B1-induced mouse lung tumors. Cancer Res 59, 36343640.Google ScholarPubMed
Thibaudeau, G. & Altig, R. (1988). Sequence of ontogenetic development and atrophy of the oral apparatus of six anuran tadpoles. J Morphology 197, 6369.CrossRefGoogle ScholarPubMed
Vera Candioti, M.F. & Altig, R. (2010). A survey of shape variation in keratinized labial teeth of anuran larvae as related to phylogeny and ecology. Bio J Linnean Society 101, 609625.CrossRefGoogle Scholar