Article contents
Nuclear Pore Transport: Insight in Situ
Published online by Cambridge University Press: 02 July 2020
Extract
The nuclear envelope (NE) physically separates the genetic machinery residing in the nucleus from protein synthesis taking place in the cytoplasm. Bidirectional transport of proteins, RNAs and RNP particles between these two compartments is mediated by the nuclear pore complexes (NPCs), large (-120 MDa) supramolecular assemblies embedded in the NE and being built of -100 different polypeptides, called nucleoporins. Extensive structural studies have revealed the 3D architecture of NPCs, and epitopes of several nucleoporins have been localized within their 3D structure.
In an attempt to go beyond the current consensus model of the NPC (Fig. lc, inset), we have embarked on a more systematic structural analysis of the molecular architecture of native NPCs. This is achieved by field-emission (FETEM; Fig. la) or energy-filtering (EFTEM; Fig. lb) TEM of completely unfixed and unstained Xenopus oocyte NEs embedded in thick (i.e. -200 nm) amorphous ice so that the 3D organization of the cytoplasmic and nuclear periphery of the NPCs (i.e. the cytoplasmic fibrils and nuclear baskets) is fully preserved (Fig. lb).
- Type
- Chambers and Channels: Functional Connections in Multiprotein Complexes Studied by Single Chambers and Channels
- Information
- Copyright
- Copyright © Microscopy Society of America
References
References:
- 1
- Cited by