Hostname: page-component-5c6d5d7d68-xq9c7 Total loading time: 0 Render date: 2024-08-18T16:12:30.240Z Has data issue: false hasContentIssue false

On the Analysis of Clustering in an Irradiated Low Alloy Reactor Pressure Vessel Steel Weld

Published online by Cambridge University Press:  21 March 2017

Kristina Lindgren*
Affiliation:
Department of Physics, Chalmers University of Technology, Göteborg SE 412 96, Sweden
Krystyna Stiller
Affiliation:
Department of Physics, Chalmers University of Technology, Göteborg SE 412 96, Sweden
Pål Efsing
Affiliation:
Vattenfall Ringhals AB, Väröbacka SE 430 22, Sweden
Mattias Thuvander
Affiliation:
Department of Physics, Chalmers University of Technology, Göteborg SE 412 96, Sweden
*
*Corresponding author. kristina.lindgren@chalmers.se
Get access

Abstract

Radiation induced clustering affects the mechanical properties, that is the ductile to brittle transition temperature (DBTT), of reactor pressure vessel (RPV) steel of nuclear power plants. The combination of low Cu and high Ni used in some RPV welds is known to further enhance the DBTT shift during long time operation. In this study, RPV weld samples containing 0.04 at% Cu and 1.6 at% Ni were irradiated to 2.0 and 6.4×1023 n/m2 in the Halden test reactor. Atom probe tomography (APT) was applied to study clustering of Ni, Mn, Si, and Cu. As the clusters are in the nanometer-range, APT is a very suitable technique for this type of study. From APT analyses information about size distribution, number density, and composition of the clusters can be obtained. However, the quantification of these attributes is not trivial. The maximum separation method (MSM) has been used to characterize the clusters and a detailed study about the influence of the choice of MSM cluster parameters, primarily on the cluster number density, has been undertaken.

Type
Materials Science (Metals)
Copyright
© Microscopy Society of America 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Cerezo, A. & Davin, L. (2007). Aspects of the observation of clusters in the 3-dimensional atom probe. Surf Interface Anal 39(2–3), 184188.CrossRefGoogle Scholar
Chen, Y., Chou, P.H. & Marquis, E.A. (2014). Quantitative atom probe tomography characterization of microstructures in a proton irradiated 304 stainless steel. J Nucl Mater 451(1–3), 130136.CrossRefGoogle Scholar
Efsing, P., Jansson, C., Mager, T. & Embring, G. (2007). Analysis of the ductile-to-brittle transition temperature shift in a commercial power plant with high nickel containing weld material. J ASTM Int 4(7), 4455.CrossRefGoogle Scholar
Efsing, P., Roudén, J. & Nilsson, P. (2014). Flux effects on radiation induced aging behaviour of low alloy steel weld material with high nickel and manganese content. Effect Radiat Nucl Mater 26, 119134.CrossRefGoogle Scholar
Gault, B., Moody, M.P., Cairney, J.M. & Ringer, S.P. (2012). Atom Probe Microscopy. New York: Springer.CrossRefGoogle Scholar
Gault, B., Müller, M., La Fontaine, A., Moody, M.P., Shariq, A., Cerezo, A., Ringer, S.P. & Smith, G.D.W. (2010). Influence of surface migration on the spatial resolution of pulsed laser atom probe tomography. J Appl Phys 108(4), 044904.CrossRefGoogle Scholar
Heinrich, A., Al-Kassab, T.a. & Kirchheim, R. (2003). Investigation of the early stages of decomposition of Cu–0.7at.% Fe with the tomographic atom probe. Mater Sci Eng A 353(1–2), 9298.CrossRefGoogle Scholar
Hyde, J.M., Burke, M.G., Gault, B., Saxey, D.W., Styman, P., Wilford, K.B. & Williams, T.J. (2011 a). Atom probe tomography of reactor pressure vessel steels: an analysis of data integrity. Ultramicroscopy 111(6), 676682.CrossRefGoogle ScholarPubMed
Hyde, J.M. & English, C.A. (2000). An analysis of the structure of irradiation induced Cu-enriched clusters in low and high nickel welds. Mat Res Soc Symp Proc 650, R6.6.1–R.6.6.12.CrossRefGoogle Scholar
Hyde, J.M., Marquis, E.A., Wilford, K.B. & Williams, T.J. (2011 b). A sensitivity analysis of the maximum separation method for the characterisation of solute clusters. Ultramicroscopy 111(6), 440447.CrossRefGoogle ScholarPubMed
Jägle, E.A., Choi, P.P. & Raabe, D. (2014). The maximum separation cluster analysis algorithm for atom-probe tomography: Parameter determination and accuracy. Microsc Microanal 20(6), 16621671.CrossRefGoogle ScholarPubMed
Kolli, R.P. & Seidman, D.N. (2007). Comparison of compositional and morphological atom-probe tomography analyses for a multicomponent Fe-Cu steel. Microsc Microanal 13(4), 272284.CrossRefGoogle ScholarPubMed
Larson, D.J., Foord, D.T., Petford-Long, A.K., Liew, H., Blamire, M.G., Cerezo, A. & Smith, G.D.W. (1999). Field-ion specimen preparation using focused ion-beam milling. Ultramicroscopy 79(1–4), 287293.CrossRefGoogle Scholar
Marquis, E.A. & Hyde, J.M. (2010). Applications of atom-probe tomography to the characterisation of solute behaviours. Mater Sci Eng R 69(4–5), 3762.CrossRefGoogle Scholar
Meslin, E., Lambrecht, M., Hernández-Mayoral, M., Bergner, F., Malerba, L., Pareige, P., Radiguet, B., Barbu, A., Gómez-Briceño, D., Ulbricht, A. & Almazouzi, A. (2010 a). Characterization of neutron-irradiated ferritic model alloys and a RPV steel from combined APT, SANS, TEM and PAS analyses. J Nucl Mater 406(1), 7383.CrossRefGoogle Scholar
Meslin, E., Radiguet, B., Pareige, P. & Barbu, A. (2010 b). Kinetic of solute clustering in neutron irradiated ferritic model alloys and a French pressure vessel steel investigated by atom probe tomography. J Nucl Mater 399(2–3), 137145.CrossRefGoogle Scholar
Miller, M.K., Chernobaeva, A.A., Shtrombakh, Y.I., Russell, K.F., Nanstad, R.K., Erak, D.Y. & Zabusov, O.O. (2009). Evolution of the nanostructure of VVER-1000 RPV materials under neutron irradiation and post irradiation annealing. J Nucl Mater 385(3), 615622.CrossRefGoogle Scholar
Miller, M.K., Powers, K.A., Nanstad, R.K. & Efsing, P. (2013). Atom probe tomography characterizations of high nickel, low copper surveillance RPV welds irradiated to high fluences. J Nucl Mater 437(1–3), 107115.CrossRefGoogle Scholar
Odette, G.R. & Lucas, G.E. (1998). Recent progress in understanding reactor pressure vessel steel embrittlement. Radiat Effect Defect Solids 144(1–4), 189231.CrossRefGoogle Scholar
Stephenson, L.T., Moody, M.P., Liddicoat, P.V. & Ringer, S.P. (2007). New techniques for the analysis of fine-scaled clustering phenomena within atom probe tomography (APT) data. Microsc Microanal 13(6), 448463.CrossRefGoogle ScholarPubMed
Styman, P.D., Hyde, J.M., Wilford, K. & Smith, G.D. (2013). Quantitative methods for the APT analysis of thermally aged RPV steels. Ultramicroscopy 132, 258264.CrossRefGoogle ScholarPubMed
Vaumousse, D., Cerezo, A. & Warren, P.J. (2003). A procedure for quantification of precipitate microstructures from three-dimensional atom probe data. Ultramicroscopy 95, 215221.CrossRefGoogle ScholarPubMed
Williams, C.A., Haley, D., Marquis, E.A., Smith, G.D. & Moody, M.P. (2013). Defining clusters in APT reconstructions of ODS steels. Ultramicroscopy 132, 271278.CrossRefGoogle ScholarPubMed
Supplementary material: Image

Lindgren supplementary material

Figure S1

Download Lindgren supplementary material(Image)
Image 21.6 MB
Supplementary material: Image

Lindgren supplementary material

Figure S2

Download Lindgren supplementary material(Image)
Image 14.6 MB