Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-25T20:12:13.611Z Has data issue: false hasContentIssue false

A Piezoelectric Goniometer Inside a Transmission Electron Microscope Goniometer

Published online by Cambridge University Press:  13 September 2011

Wei Guan*
Affiliation:
NanoLAB Centre, Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD, UK
Aiden Lockwood
Affiliation:
NanoLAB Centre, Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD, UK
Beverley J. Inkson
Affiliation:
NanoLAB Centre, Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD, UK
Günter Möbus*
Affiliation:
NanoLAB Centre, Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD, UK
*
Corresponding author. E-mail: w.guan@sheffield.ac.uk
Corresponding author. E-mail: g.moebus@sheffield.ac.uk
Get access

Abstract

Piezoelectric nanoactuators, which can provide extremely stable and reproducible positioning, are rapidly becoming the dominant means for position control in transmission electron microscopy. Here we present a second-generation miniature goniometric nanomanipulation system, which is fully piezo-actuated with ultrafine step size for translation and rotation, programmable, and can be fitted inside a hollowed standard specimen holder for a transmission electron microscope (TEM). The movement range of this miniaturized drive is composed of seven degrees of freedom: three fine translational movements (X, Y, and Z axes), three coarse translational movements along all three axes, and one rotational movement around the X-axis with an integrated angular sensor providing absolute rotation feedback. The new piezoelectric system independently operates as a goniometer inside the TEM goniometer. In situ experiments, such as tomographic tilt without missing wedge and differential tilt between two specimens, are demonstrated.

Type
Equipment/Techniques Development
Copyright
Copyright © Microscopy Society of America 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abramoff, M.D., Magelhaes, P.J. & Ram, S.J. (2004). Image processing with ImageJ. Biophotonics Int 11(7), 3642.Google Scholar
Bobji, M.S., Pethica, J.B. & Inkson, B.J. (2005). Indentation mechanics of Cu-Be quantified by an in situ transmission electron microscopy mechanical probe. J Mater Res 20(10), 27262732.CrossRefGoogle Scholar
Bobji, M.S., Ramanujan, C.S., Pethica, J.B. & Inkson, B.J. (2006). A miniaturized TEM nanoindenter for studying material deformation in situ. Meas Sci Technol 17(6), 13241329.CrossRefGoogle Scholar
Briston, K.J., Peng, Y., Cullis, A.G. & Inkson, B.J. (2010). Fabrication of carbon nanotubes by electrical breakdown of carbon-coated Au nanowires. Mater Lett 64(14), 15831586.CrossRefGoogle Scholar
Dahmen, U. (2007). A status report on the TEAM project. Microsc Microanal 13(S2), 11501151 (CD-ROM).CrossRefGoogle Scholar
De Hosson, J.T.M., Soer, W.A., Minor, A.M., Shan, Z.W., Stach, E.A., Asif, S.A.S. & Warren, O.L. (2006). In situ TEM nanoindentation and dislocation-grain boundary interactions: A tribute to David Brandon. J Mater Sci 41(23), 77047719.CrossRefGoogle Scholar
Erts, D., Olin, H., Ryen, L., Olsson, E. & Thölén, A. (2000). Maxwell and Sharvin conductance in gold point contacts investigated using TEM-STM. Phys Rev B 61(19), 1272512727.CrossRefGoogle Scholar
Frank, J. (2006). Electron Tomography: Methods for Three-Dimensional Visualization of Structures in the Cell. New York: Springer.CrossRefGoogle Scholar
Fukuda, T., Nakajima, M., Liu, P. & ElShimy, H. (2009). Nanofabrication, nanoinstrumentation and nanoassembly by nanorobotic manipulation. Int J Robotics Res 28(4), 537547.CrossRefGoogle Scholar
Gontard, L.C., Dunin-Borkowski, R.E. & Ozkaya, D. (2008). Three-dimensional shapes and spatial distributions of Pt and PtCr catalyst nanoparticles on carbon black. J Microsc Oxford 232(2), 248259.CrossRefGoogle ScholarPubMed
Iancu, C.V., Wright, E.R., Benjamin, J., Tivol, W.F., Dias, D.P., Murphy, G.E., Morrison, R.C., Heymann, J.B. & Jensen, G.J. (2005). A “flip-flop” rotation stage for routine dual-axis electron cryotomography. J Struct Biol 151(3), 288297.CrossRefGoogle Scholar
Kamino, T., Yaguchi, T., Konno, M., Ohnishi, T. & Ishitani, T. (2004). A method for multidirectional TEM observation of a specific site at atomic resolution. J Electron Microsc 53(6), 583588.CrossRefGoogle ScholarPubMed
Kizuka, T., Yamada, K., Deguchi, S., Naruse, M. & Tanaka, N. (1997). Cross-sectional time-resolved high-resolution transmission electron microscopy of atomic-scale contact and noncontact-type scannings on gold surfaces. Phys Rev B 55(12), R7398R7401.CrossRefGoogle Scholar
Lo, W.K. & Spence, J.C.H. (1993). Investigation of STM image artifacts by in situ reflection electron-microscopy. Ultramicroscopy 48(4), 433444.CrossRefGoogle Scholar
Lockwood, A.J., Bobji, M.S., Bunyan, R.J.T. & Inkson, B.J. (2010a). Cyclic deformation and nano-contact adhesion of MEMS nano-bridges by in-situ TEM nanomechanical testing. J Phys Conf Ser 241(1), 012056.CrossRefGoogle Scholar
Lockwood, A.J., Wang, J.J., Gay, R. & Inkson, B.J. (2008). Characterising performance of TEM compatible nano manipulation slip-stick inertial sliders against gravity. J Phys Conf Ser 126(1), 012096.CrossRefGoogle Scholar
Lockwood, A.J., Wedekind, J., Gay, R.S., Bobji, M.S., Amavasai, B., Howarth, M., Möbus, G. & Inkson, B.J. (2010b). Advanced transmission electron microscope triboprobe with automated closed-loop nanopositioning. Meas Sci Technol 21(7), 075901.CrossRefGoogle Scholar
Lu, Y., Huang, J.Y., Wang, C., Sun, S.H. & Lou, J. (2010). Cold welding of ultrathin gold nanowires. Nat Nanotechnol 5(3), 218224.CrossRefGoogle ScholarPubMed
Mastronarde, D.N. (1997). Dual-axis tomography: An approach with alignment methods that preserve resolution. J Struct Biol 120(3), 343352.CrossRefGoogle ScholarPubMed
Medford, B.D., Rogers, B.L., Laird, D., Berdunov, N., Lockwood, A.J., Gnanavel, T., Guan, W., Wang, J.J., Möbus, G., Inkson, B.J. & Beton, P.H. (2010). A novel tripod-driven platform for in-situ positioning of samples and electrical probes in a TEM. J Phys Conf Ser 241(1), 012057.CrossRefGoogle Scholar
Messaoudi, C., Boudier, T., Sorzano, C.O.S. & Marco, S. (2007). TomoJ: Tomography software for three-dimensional reconstruction in transmission electron microscopy. BMC Bioinformatics 8, 288297.CrossRefGoogle Scholar
Midgley, P.A., Ward, E.P.W., Hungria, A.B. & Thomas, J.M. (2007). Nanotomography in the chemical, biological and materials sciences. Chem Soc Rev 36(9), 14771494.CrossRefGoogle ScholarPubMed
Minor, A.M., Asif, S.A.S., Shan, Z.W., Stach, E.A., Cyrankowski, E., Wyrobek, T.J. & Warren, O.L. (2006). A new view of the onset of plasticity during the nanoindentation of aluminium. Nat Mater 5(9), 697702.CrossRefGoogle ScholarPubMed
Möbus, G. & Inkson, B.J. (2007). Nanoscale tomography in materials science. Mater Today 10(12), 1825.CrossRefGoogle Scholar
Spence, J.C.H. (1988). A scanning tunneling microscope in a side-entry holder for reflection electron-microscopy in the Philips Em400. Ultramicroscopy 25(2), 165169.CrossRefGoogle Scholar
Stach, E.A. (2008). Real-time observations with electron microscopy. Mater Today 11, 5058.CrossRefGoogle Scholar
Stach, E.A., Freeman, T., Minor, A.M., Owen, D.K., Cumings, J., Wall, M.A., Chraska, T., Hull, R., Morris, J.W., Zettl, A. & Dahmen, U. (2001). Development of a nanoindenter for in situ transmission electron microscopy. Microsc Microanal 7(6), 507517.CrossRefGoogle ScholarPubMed
Svensson, K., Jompol, Y., Olin, H. & Olsson, E. (2003). Compact design of a transmission electron microscope-scanning tunneling microscope holder with three-dimensional coarse motion. Rev Sci Instrum 74(11), 49454947.CrossRefGoogle Scholar
Wall, M.A. & Dahmen, U. (1998). An in situ nanoindentation specimen holder for a high voltage transmission electron microscope. Microsc Res Techniq 42(4), 248254.3.0.CO;2-M>CrossRefGoogle Scholar
Wang, J.J., Lockwood, A.J., Gay, R. & Inkson, B.J. (2008). Characterising ambient and vacuum performance of a miniaturised TEM nanoindenter for in-situ material deformation. J Phys Conf Ser 126(1), 012095.CrossRefGoogle Scholar
Wang, J.J., Lockwood, A.J., Peng, Y., Xu, X., Bobji, M.S. & Inkson, B.J. (2009). The formation of carbon nanostructures by in situ TEM mechanical nanoscale fatigue and fracture of carbon thin films. Nanotechnology 20(30), 305703.CrossRefGoogle ScholarPubMed
Warren, O.L., Shan, Z.W., Asif, S.A.S., Stach, E.A., Morris, J.W. & Minor, A.M. (2007). In situ nanoindentation in the TEM. Mater Today 10(4), 5960.CrossRefGoogle Scholar
Wiesendanger, R. (1994). Scanning Probe Microscopy and Spectroscopy: Methods and Applications. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Xu, X.J., Lockwood, A.J., Guan, W., Gay, R., Saghi, Z., Wang, J.J., Peng, Y., Inkson, B.J. & Möbus, G. (2008). MRT letter: Full-tilt electron tomography with a piezo-actuated rotary drive. Microsc Res Techniq 71(11), 773777.CrossRefGoogle ScholarPubMed
Xu, X.J., Saghi, Z., Gay, R. & Möbus, G. (2007). Reconstruction of 3D morphology of polyhedral nanoparticles. Nanotechnology 18(22), 225501225508.CrossRefGoogle Scholar
Yoshida, K., Ikuhara, Y.H., Takahashi, S., Hirayama, T., Saito, T., Sueda, S., Tanaka, N. & Gai, P.L. (2009). The three-dimensional morphology of nickel nanodots in amorphous silica and their role in high-temperature permselectivity for hydrogen separation. Nanotechnology 20(31), 315703.CrossRefGoogle ScholarPubMed