Hostname: page-component-848d4c4894-8bljj Total loading time: 0 Render date: 2024-07-03T21:39:39.905Z Has data issue: false hasContentIssue false

Prospects and Limitations of Energy Filtering TEM in Spectrum Imaging Analysis

Published online by Cambridge University Press:  02 July 2020

J. Mayer
Affiliation:
Gemeinschaftslabor fur Elektronenmikroskopie, RWTH Aachen, D-52056, Aachen, Germany
M. Pidun
Affiliation:
Gemeinschaftslabor fur Elektronenmikroskopie, RWTH Aachen, D-52056, Aachen, Germany
P. Karduck
Affiliation:
Gemeinschaftslabor fur Elektronenmikroskopie, RWTH Aachen, D-52056, Aachen, Germany
A. Zern
Affiliation:
Max-Planck-Institut fur Metallforschung, Seestr. 92, D-70174, Stuttgart, Germany
K. Hahn
Affiliation:
Max-Planck-Institut fur Metallforschung, Seestr. 92, D-70174, Stuttgart, Germany
Get access

Extract

The increasing number of energy filtering transmission electron microscopes (EFTEMs) has given many microscopists the ability to apply the fast and very efficient tool of electron spectroscopic imaging (ESI) for analytical characterisation, rather than to record EELS spectra. In a more general framework, the new ESI methods and the standard PEELS technique both aim at exploring the same three-dimensional data space. This data space is represented by the spatial co-ordinates x, y and the energy loss ΔE. The resulting intensity distribution I(x,y, ΔE) is frequently referred to as a spectrum image and the experimental techniques to acquire the corresponding data are referred to as spectrum imaging. The actual analysis can either be based on recording PEELS spectra for a twodimensional array of probe positions, or on recording series of energy filtered images across inner shell loss edges or in the low loss region.

Type
Spectrum Imaging: Applications and Methods of Analysis
Copyright
Copyright © Microscopy Society of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References:

1.Krivanek, O.L. et al., Microsc. Microanal. Microstr. 2 (1991) 315.CrossRefGoogle Scholar
2.Jeanguillaume, C. and Colliex, C., Ultramicroscopy 28 (1989) 252.CrossRefGoogle Scholar
3.Hunt, J.A. and Williams, D.B., Ultramicroscopy 38 (1991) 47.CrossRefGoogle Scholar
4.Lavergne, J.L. et al., Microsc. Microanal. Microstr. 3 (1992) 517.CrossRefGoogle Scholar
5.Mayer, J. et al., Micron 28 (1997) 361.CrossRefGoogle Scholar
6.Plitzko, J.M. and Mayer, J., Ultramicroscopy 78 (1999) 207.CrossRefGoogle Scholar
7.Mayer, J. and Plitzko, J.M., J. Microsc. 183 (1996) 2.CrossRefGoogle Scholar
8. We thank Schineller, B., Heime, K. and AIXTRON AG for providing the specimen material.Google Scholar