Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-23T02:27:32.421Z Has data issue: false hasContentIssue false

Spectroscopic and Microscopic Study of Peroxyformic Pulping of Agave Waste

Published online by Cambridge University Press:  27 October 2016

Hilda M. Hernández-Hernández*
Affiliation:
Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad Km 1, Tulancingo, C.P. 43600, Hidalgo, México
Jorge J. Chanona-Pérez
Affiliation:
Departamento de Ingeniería Bioquímica, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Prolongación de Carpio y Plan de Ayala s/n, Col. Santo Tomas, C.P. 11340, México D.F.
Alberto Vega
Affiliation:
Research Group EnQA, Department of Physical Chemistry and Chemical Engineering, Centro de Investigacións Científicas Avanzadas (CICA), Faculty of Science, Universidade da Coruña, 15071 A Coruña. Spain
Pablo Ligero
Affiliation:
Research Group EnQA, Department of Physical Chemistry and Chemical Engineering, Centro de Investigacións Científicas Avanzadas (CICA), Faculty of Science, Universidade da Coruña, 15071 A Coruña. Spain
Reynold R. Farrera-Rebollo
Affiliation:
Departamento de Ingeniería Bioquímica, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Prolongación de Carpio y Plan de Ayala s/n, Col. Santo Tomas, C.P. 11340, México D.F.
Jorge A. Mendoza-Pérez
Affiliation:
Departamento Ingeniería en Sistemas Ambientales, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Wilfrido Massieu s/n U, Profesor Adolfo López Mateos, Gustavo A. Madero, C.P. 07738, México D.F.
Georgina Calderón-Domínguez
Affiliation:
Departamento de Ingeniería Bioquímica, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Prolongación de Carpio y Plan de Ayala s/n, Col. Santo Tomas, C.P. 11340, México D.F.
Norma Güemes Vera
Affiliation:
Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad Km 1, Tulancingo, C.P. 43600, Hidalgo, México
*
* Corresponding author.hilda2hdez@hotmail.com
Get access

Abstract

The peroxyformic process is based on the action of a carboxylic acid (mainly formic acid) and the corresponding peroxyacid. The influences of processing time (60–180 min), formic acid concentration (80–95%), temperature (60–80°C), and hydrogen peroxide concentration (2–4%) on peroxyformic pulping of agave leaves were studied by surface response methodology using a face-centered factorial design. Empirical models were obtained for the prediction of yield, κ number (KN) and pulp viscosity as functions of the aforementioned variables. Mathematical optimization enabled us to select a set of operational variables that produced the best fractionation of the material with the following results: pulp yield (26.9%), KN (3.6), and pulp viscosity (777 mL/g). Furthermore, this work allowed the description and evaluation of changes to the agave fibers during the fractionation process using different microscopic and spectroscopic techniques, and provided a comprehensive and qualitative view of the phenomena occurring in the delignification of agave fibers. The use of confocal and scanning electron microscopy provided a detailed understanding of the microstructural changes to the lignin and cellulose in the fibers throughout the process, whereas Raman spectroscopy and X-ray diffraction analysis indicated that cellulose in the pulp after treatment was mainly of type I.

Type
Biological Applications
Copyright
© Microscopy Society of America 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agarwal, U.P. & Ralph, S.A. (1997). FT–Raman spectroscopy of wood: identifying contributions of lignin and carbohydrate polymers in the spectrum of black spruce (Picea mariana). J Appl Spectrosc 51, 16481655.CrossRefGoogle Scholar
Agarwal, U.P. & Reiner, R.S. (2009). Near–IR surface-enhanced Raman spectrum of lignin. J Raman Spectrosc 40, 15271534.Google Scholar
Agarwal, U.P., McSweeny, J.D. & Ralph, S.A. (2011). FT–Raman investigation of milled-wood lignins: Softwood, hardwood, and chemically modified black spruce lignins. J Wood Chem Technol 31, 324344.Google Scholar
Altinisik, A., Seki, Y., Ertas, S., Akar, E., Bozac, E. & Seki, Y. (2015). Evaluating of Agave americana fibres for biosorption of dye from aqueous Solution. Fibre Polym 16(2), 370377.Google Scholar
Basu, G., Roy, A.N., Satapathy, K.K., Abbas, S.k. & Chakraborty, L.M.R. (2012). Potentially for value-added technical use of Indian sisal. Ind Crop Prod 36, 3340.Google Scholar
Bateni, H. & Karimi, K. (2016). Biodiesel production from castor plant integrating ethanol production via a biorefinery approach. Chem Eng Res Des 107, 4–12.CrossRefGoogle Scholar
Bessadok, A., Langevin, D., Gouanvé, F., Chappey, C., Roudesli, S. & Marais, S. (2009). Study of water sorption on modified agave fibres. Carbohyd Polym 76, 7485.Google Scholar
Carvalho, W.S., Oliveira, T.J., Cardoso Cássia, R. & Ataídea, C.H. (2015). Thermogravimetric analysis and analytical pyrolysis of a variety of lignocellulosic sorghum. Chem Eng Res Des 9, 53375345.Google Scholar
Castillo-Carvajal, L.C., Pedroza-Rodríguez, A.M. & Barragan-Huerta, B.E. (2013). Adsorption and biological removal of basic green 4 dye using white-rot fungi immobilized on Agave tequilana weber waste. Fresen Environ Bull 22, 23342343.Google Scholar
Cherian, B.M., Leão, A.L., de Souza, S.F., Thomas, S., Pothan, L.A. & Kottaisamy, M. (2010). Isolation of nanocellulose from pineapple leaf fibres by steam explosion. Carbohyd Polym 81, 720725.Google Scholar
Corbin, K.R., Byrt, C.S., Bauer, S., DeBolt, S., Chambers, D., Holtum, J.A.M., Karem, G., Henderson, M., Lahnstein, J., Beahan, C.T., Bacic, A., Fincher, G.B., Betts, N.S. & Burton, R.A. (2015). Prospecting for energy-rich renewable raw materials: Agave leaf case study. PLoS One 10, 123.Google Scholar
Davis, S.C. & Long, S.P. (2015). Sisal/agave. In Industrial Crops Breeding for BioEnergy and Bioproducts, Cruz, V.M.V. & Dierig, D.A. (Eds.), pp. 335350. New Delhi, India: Springer.Google Scholar
El Oudiani, A., Chaabouni, Y., Msahli, S. & Sakli, F. (2012). Morphological and crystalline characterization of NaOH and NaOCl treated Agave americana L. fiber. Ind Crops Prod 36, 257266.Google Scholar
Ferrer, A., Vega, A., Rodríguez, A. & Jiménez, L. (2013). Acetosolv pulping for the fractionation of empty fruit bunches from palm oil industry. Bioresource Technol 132, 115120.Google Scholar
Ferrer, A., Vega, A., Rodríguez, A., Ligero, P. & Jiménez, L. (2011). Milox fractionation of empty fruit bunches from Elaeis guineensis . Bioresource Technol 102, 97559762.Google Scholar
Ganduri, L., Van der Merwe, A.F. & Matope, S. (2015). Economic model for the production of spirit, inulin and syrup from the locally eco-friendly Agave americana . Procedia CIRP 28, 173178.CrossRefGoogle Scholar
Gomes, Y.F., Medeiros, P.N., Bomio, M.R.D., Santos, I.M.G., Paskocimas, C.A., Nascimento, R.M. & Motta, F.V. (2015). Optimizing the synthesis of cobalt aluminate pigment using fractional factorial design. Ceram Int 41, 699706.CrossRefGoogle Scholar
González, D., Campos, A.R., Cunha, A.M., Santos, V. & Parajó, J.C. (2010 a). Utilization of fibers obtained by peroxyformic acid processing of broom as reinforcing agents for biocomposites. BioResources 5, 25912610.CrossRefGoogle Scholar
González, G.S., Moreira, M.T., Artal, G., Maldonado, L. & Feijoo, G. (2010 b). Environmental impact assessment of non-wood based pulp production by soda-anthraquinone pulping process. J Clean Prod 18, 137145.CrossRefGoogle Scholar
Gumeta-Chávez, C., Chanona-Pérez, J.J., Mendoza-Pérez, J.A., Terrés-Rojas, E., Garibay-Febles, V. & Gutiérrez-López, G.F. (2011). Shrinkage and deformation of Agave atrovirens karw tissue during convective drying: Influence of structural arrangements. Drying Technol 29, 612623.CrossRefGoogle Scholar
Hernández-Botello, M.T., Chanona-Pérez, J.J., Mendoza-Pérez, J.A., Trejo-Valdez, M., Calderón-Domínguez, G., Barriada Pereira, J.L., Sastre de Vicente, M.E., Perea-Flores, M.J. & Terrés-Rojas, E. (2014). Effect of the fluidized bed drying on the structure and biosorption capability of Pb+2 of agave epidermis. Rev Mex Ing Quim 13(3), 865885.Google Scholar
Hernández-Hernández, H.M., Chanona-Pérez, J.J., Calderón-Domínguez, G., Perea-Flores, M.J., Mendoza-Pérez Jorge, A., Vega, A., Ligero, P., Palacios-González, E. & Farrera-Rebollo, R.R. (2014). Evaluation of agave fiber delignification by means of microscopy techniques and image analysis. Microsc Microanal 20, 14361446.Google Scholar
Hu, Y., Tang, L., Lu, Q., Wang, S., Chen, X. & Huang, B. (2014). Preparation of cellulose nanocrystals and carboxylated cellulose nanocrystals from borer powder of bamboo. Cellulose 21, 16111618.Google Scholar
Idarraga, G., Ramos, J., Zuniga, V., Sahin, T. & Young, R.A. (1999). Pulp and paper from blue agave waste from tequila production. J Agric Food Chem 47, 44504455.Google Scholar
Karimi, K. & Chisti, Y. (2015). Future of bioethnol. Biofuel Res J 5, 147147.Google Scholar
Kavkler, K. & Demsarc, A. (2011). Examination of cellulose textile fibres in historical objects by micro-Raman spectroscopy. Spectrochim Acta Mol Biomol Spectrosc 78, 740746.Google Scholar
Kestur, G.S., Flores-Sahagun, T.H.S., Dos Santos, L.P., Dos Santos, J., Mazzaro, I. & Mikowski, A. (2013). Characterization of blue agave bagasse fibres of Mexico. Compos Part A Appl Sci Manuf 45, 153161.Google Scholar
Ligero, P., Vega, A. & Villaverde, J.J. (2010). Delignification of Miscanthus giganteus by the Milox process. Bioresource Technol 101, 31883193.Google Scholar
Ligero, P., Villaverde, J.J., Vega, A. & Bao, M. (2008). Acetosolv delignification of depithed cardoon (Cynara cardunculus) stalks. Ind Crops Prod 25, 294300.CrossRefGoogle Scholar
Lima, C.S.S., Conceição, M.M., Silva, F.L.H., Lima, E.E., Conrado, L.S. & Leão, D.A.S. (2013). Characterization of acid hydrolysis of sisal. Appl Energy 102, 254259.CrossRefGoogle Scholar
Ma, J.F., Yang, G.H., Mao, J.Z. & Xu, F. (2011). Characterization of anatomy, ultrastructure and lignin microdistribution in Forsythia suspense . Ind Crops Prod 33, 358363.Google Scholar
Madani, S., Gheshlaghi, R., Akhavan Mahdavi, M., Sobhani, M. & Elkamel, A. (2015). Optimization of the performance of a double-chamber microbial fuel cell through factorial design of experiments and response surface methodology. Fuel 150, 434440.Google Scholar
Medina-Morales, M.A., Contreras-Esquivel, J.C., De la Garza-Toledo, H., Rodríguez, R. & Aguilar, C.N. (2011). Enzymatic bioconversion of agave leaves fiber hydrolysis using Plackett-Burman design. Am J Agric Biol Sci 6, 480485.Google Scholar
Mellado-Mojica, E. & López, M.G. (2015). Identification, classification, and discrimination of agave syrups from natural sweeteners by infrared spectroscopy and HPAEC-PAD. Food Chem 167, 349357.Google Scholar
Mielenz, J.R., Rodriguez, M. Jr., Thompson, O.A., Yang, X. & Yin, H. (2015). Development of Agave as a dedicated biomass source: Production of biofuels from whole plants. Biotechnol Biofuels 8, 79.Google Scholar
Montañez, J.L., Victoria, J.C., Flores, R. & Vivar, M.A. (2011). Fermentation of Agave tequilana Weber azul fructans by Zymomonas mobilis and Saccharomices cerevesiae in the production of bioethanol. Inf Technol 22, 314.Google Scholar
Montgomery, D.C. (2011). Design and Analysis of Experiments. Mexico: LimusaWiley, p. 456.Google Scholar
Moriana, R., Vilaplana, F. & Ek, M. (2015). Forest residues as renewable resources for bio-based polymeric materials and bioenergy: Chemical composition, structure and thermal properties. Cellulose 22, 3409–3423.Google Scholar
Murugan, S. & Rajendran, S. (2013). Bioethanol production from Agave leaves using Saccharomices cerevesiae (MTCC 173) and Zymomonas mobilis (MTCC 2427). Int J Microbiol Res 4, 2326.Google Scholar
Ramírez Tobías, H.M., Niño Vázquez, R., Aguirre Rivera, J.R., Flores, J., De-Nova Vázquez, J.A. & Jarquin Gálvez, R. (2016). Seed viability and effect of temperature on germination of Agave angustifolia subsp. tequilana and A. mapisaga; two useful Agave species. Genet Resour Crop Evol 63, 881–888.Google Scholar
Reddy, K.O., Zhang, J., Zhang, J. & Rajulu, A.V. (2014). Preparation and properties of self-reinforced cellulose composite films from Agave microfibrils using an ionic liquid. Carbohyd Polym 114, 537545.Google Scholar
Segal, L., Creely, J., Martin, A. & Conrad, C. (1959). An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29, 786794.Google Scholar
Singha, A.S. & Rana Raj, K. (2012). Functionalization of cellulosic fibres by graft copolymerization of acrylonitrile and ethyl acrylate from their binary mixtures. Carbohyd Polym 87, 500511.CrossRefGoogle ScholarPubMed
Torres, I., Casas, A., Vega, E., Martínez-Ramos, M. & Delgado-Lemus, A. (2015). Population dynamics and sustainable management of mescal agaves in central Mexico: Agave potatorum in the tehuacán- cuicatlán valley. Econ Bot 69(1), 2641.Google Scholar
Villaverde, J.J., Ligero, P. & de Vega, A. (2011). Applicability of short totally chlorine free bleaching sequences to Miscanthus x giganteus organosolv pulps. Ind Eng Chem Res 50, 98479851.Google Scholar
Xu, F., Zhong, X.C., Sun, R.C. & Lu, Q. (2006). Anatomy, ultrastructure, and lignin distribution in cell wall of Caragana korshinskii . Ind Crops Prod 24, 186193.Google Scholar
Yang, D., Zhong, L.-X., Yuan, T.-Q., Peng, X.-W. & Sun, R.-C. (2013). Studies on the structural characterization of lignin, hemicelluloses and cellulose fractionated by ionic liquid followed by alkaline extraction from bamboo. Ind Crops Prod 43, 141149.Google Scholar
Yang, L., Lu, M., Carl, S., Mayer, J.A., Cushman, J.C., Tian, E. & Lin, H. (2015). Biomass characterization of Agave and Opuntia as potential biofuel feedstocks. Biomass Bioenergy 76, 4353.Google Scholar