Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-26T17:45:14.976Z Has data issue: false hasContentIssue false

Structural and Chemical Evolution of the Spontaneous Core-Shell Structures of AlxGa1-xN/GaN Nanowires

Published online by Cambridge University Press:  03 April 2014

Rabie Fath Allah*
Affiliation:
Dpto. Ciencia de los Materiales e Ingeniería Metalúrgica y Q.I., Facultad de Ciencias, Apdo. 40, 11510 Puerto Real, Cádiz, Spain
Teresa Ben
Affiliation:
Dpto. Ciencia de los Materiales e Ingeniería Metalúrgica y Q.I., Facultad de Ciencias, Apdo. 40, 11510 Puerto Real, Cádiz, Spain
David González
Affiliation:
Dpto. Ciencia de los Materiales e Ingeniería Metalúrgica y Q.I., Facultad de Ciencias, Apdo. 40, 11510 Puerto Real, Cádiz, Spain
*
*Corresponding author. rabie.fath@uca.es
Get access

Abstract

A study by electron microscopy techniques of the structural and compositional properties of AlxGa1-xN/GaN nanowire (NW) heterostructures on Si(111) is presented. AlxGa1-xN depositions grown without catalyst by plasma-assisted molecular beam epitaxy were designed to form NWs in the range of 0.20<x<0.40 with different lengths and growth temperatures. The NWs exhibit a well-defined core-shell radial structure with a complex chemical distribution along and across the growth direction that finally affects the NW morphology. All the wires have an initial stage with a maximum Al content in the core slightly above the GaN/AlxGa1-xN interface, which initially decreases exponentially with the NW height depending on the nominal Al content and the growth temperature. In longer NWs, this trend changes and evolves increasing both the Al/Ga ratio and the core diameter as well as sharpening the shell. Adatom surface kinetic differences and the geometrical shadow effect during the growth are the probable drivers of this behavior.

Type
Materials Applications
Copyright
© Microscopy Society of America 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allah, R.F., Ben, T., Songmuang, R. & González, D. (2012). Imaging and analysis by transmission electron microscopy of the spontaneous formation of Al-rich shell structure in AlxGa1-xN/GaN nanowires. Appl Phys Express 5(4), 045002045003.CrossRefGoogle Scholar
Asif Khan, M. (2005). Nitride UV devices. Jpn J Appl Phys 44(10), 71917206.CrossRefGoogle Scholar
Averbeck, R. & Riechert, H. (1999). Quantitative model for the MBE-growth of ternary nitrides. Phys Status Solidi A 176(1), 301305.3.0.CO;2-H>CrossRefGoogle Scholar
Bhattacharyya, A., Moustakas, T.D., Zhou, L., Smith, D.J. & Hug, W. (2009). Deep ultraviolet emitting AlGaN quantum wells with high internal quantum efficiency. Appl Phys Lett 94(18), 181907.CrossRefGoogle Scholar
Boxberg, F., Søndergaard, N. & Xu, H.Q. (2010). Photovoltaics with piezoelectric core−shell nanowires. Nano Lett 10(4), 11081112.CrossRefGoogle ScholarPubMed
Calarco, R., Meijers, R.J., Debnath, R.K., Stoica, T., Sutter, E. & Luth, H. (2007). Nucleation and growth of GaN nanowires on Si(111) performed by molecular beam epitaxy. Nano Lett 7(8), 22482251.CrossRefGoogle ScholarPubMed
Debnath, R.K., Meijers, R., Richter, T., Stoica, T., Calarco, R. & Luth, H. (2007). Mechanism of molecular beam epitaxy growth of GaN nanowires on Si(111). Appl Phys Lett 90(12), 123117.CrossRefGoogle Scholar
Furtmayr, F., Teubert, J., Becker, P., Conesa-Boj, S., Morante, J.R., Chernikov, A., Schäfer, S., Chatterjee, S., Arbiol, J. & Eickhoff, M. (2011). Carrier confinement in GaN/AlxGa1−xN nanowire heterostructures (0&lt;x≤ 1). Phys Rev B 84(20), 205303.CrossRefGoogle Scholar
Glas, F. (2006). Critical dimensions for the plastic relaxation of strained axial heterostructures in free-standing nanowires. Phys Rev B 74(12), 121302.CrossRefGoogle Scholar
Guo, Y.-N., Xu, H.-Y., Auchterlonie, G.J., Burgess, T., Joyce, H.J., Gao, Q., Tan, H.H., Jagadish, C., Shu, H.-B., Chen, X.-S., Lu, W., Kim, Y. & Zou, J. (2013). Phase separation induced by Au catalysts in ternary InGaAs nanowires. Nano Lett 13(2), 643650.CrossRefGoogle ScholarPubMed
Harrison, W.A. (1989). Electronic Structure and the Properties of Solids : The Physics of the Chemical Bond . San Francisco: Dover Publications.Google Scholar
Jindal, V., Grandusky, J., Tripathi, N., Tungare, M. & Shahedipour-Sandvik, F. (2007). Density functional calculations of the binding energies and adatom diffusion on strained AlN (0001) and GaN (0001) surfaces. MRS Online Proc Library 1040.CrossRefGoogle Scholar
Jindal, V., State University of New York at Albany (2008). Development of III-Nitride Nanostructures by Metal-Organic Chemical Vapor Deposition. Albany: State University of New York at Albany.Google Scholar
Kikuchi, A., Kawai, M., Tada, M. & Kishino, K. (2004). InGaN/GaN multiple quantum disk nanocolumn light-emitting diodes grown on (111) Si substrate. Jpn J Appl Phys 43(Part 2, 12A), L1524L1526.CrossRefGoogle Scholar
Kim, H.-M., Cho, Y.-H., Lee, H., Kim, S.I., Ryu, S.R., Kim, D.Y., Kang, T.W. & Chung, K.S. (2004). High-brightness light emitting diodes using dislocation-free indium gallium nitride/gallium nitride multiquantum-well nanorod arrays. Nano Lett 4(6), 10591062.CrossRefGoogle Scholar
Li, Y., Xiang, J., Qian, F., Gradečak, S., Wu, Y., Yan, H., Blom, D.A. & Lieber, C.M. (2006). Dopant-free GaN/AlN/AlGaN radial nanowire heterostructures as high electron mobility transistors. Nano Lett 6(7), 14681473.CrossRefGoogle ScholarPubMed
Lim, S.K., Tambe, M.J., Brewster, M.M. & Gradečak, S. (2008). Controlled growth of ternary alloy nanowires using metalorganic chemical vapor deposition. Nano Lett 8(5), 13861392.CrossRefGoogle ScholarPubMed
Neumann, H. (1995). J.H. Edgar (ed.). Properties of Group III Nitrides. (EMIS Datareviews Series No. 11). INSPEC, The Institution of Electrical Engineers, London 1994. 302 Seiten, 121 Abbildungen, 77 Tabellen. ISBN 0–85296–818–3. Crystal Res Technol 30(7), 910.CrossRefGoogle Scholar
Park, Y.S., Hwang, B.R., Lee, J.C., Im, H., Cho, H.Y., Kang, T.W., Na, J.H. & Park, C.M. (2006). Self-assembled AlxGa1−x N nanorods grown on Si(001) substrates by using plasma-assisted molecular beam epitaxy. Nanotechnology 17(18), 4640.CrossRefGoogle Scholar
Pennycook, S.J. & Boatner, L.A. (1988). Chemically sensitive structure-imaging with a scanning transmission electron microscope. Nature 336(6199), 565567.CrossRefGoogle Scholar
Pierret, A., Bougerol, C., Murcia-Mascaros, S., Cros, A., Renevier, H., Gayral, B. & Daudin, B. (2013). Growth, structural and optical properties of AlGaN nanowires in the whole composition range. Nanotechnology 24(11), 115704.CrossRefGoogle ScholarPubMed
Qian, F., Gradečak, S., Li, Y., Wen, C.-Y. & Lieber, C.M. (2005). Core/multishell nanowire heterostructures as multicolor, high-efficiency light-emitting diodes. Nano Lett 5(11), 22872291.CrossRefGoogle ScholarPubMed
Qian, F., Li, Y., Gradečak, S., Wang, D., Barrelet, C.J. & Lieber, C.M. (2004). Gallium nitride-based nanowire radial heterostructures for nanophotonics. Nano Lett 4(10), 19751979.CrossRefGoogle Scholar
Ristić, J., Calleja, E., Sánchez-García, M.A., Ulloa, J.M., Sánchez-Páramo, J., Calleja, J.M., Jahn, U., Trampert, A. & Ploog, K.H. (2003). Characterization of GaN quantum discs embedded in AlxGa1-xN nanocolumns grown by molecular beam epitaxy. Phys Rev B 68(12), 125305.CrossRefGoogle Scholar
Sekiguchi, H., Kishino, K. & Kikuchi, A. (2008). GaN/AlGaN nanocolumn ultraviolet light-emitting diodes grown on n-(111) Si by RF-plasma-assisted molecular beam epitaxy. Electron Lett 44(2), 151152.CrossRefGoogle Scholar
Shitara, T., Neave, J.H. & Joyce, B.A. (1993). Reflection high-energy electron diffraction intensity oscillations and anisotropy on vicinal AlAs(001) during molecular-beam epitaxy. App Phys Lett 62(14), 16581660.CrossRefGoogle Scholar
Sköld, N., Karlsson, L.S., Larsson, M.W., Pistol, M.-E., Seifert, W., Trägårdh, J. & Samuelson, L. (2005). Growth and optical properties of strained GaAs−GaxIn1-xP core−shell nanowires. Nano Lett 5(10), 19431947.CrossRefGoogle ScholarPubMed
Songmuang, R., Landre, O. & Daudin, B. (2007). From nucleation to growth of catalyst-free GaN nanowires on thin AlN buffer layer. Appl Phys Lett 91(25), 251902.CrossRefGoogle Scholar
Su, J., Gherasimova, M., Cui, G., Tsukamoto, H., Han, J., Onuma, T., Kurimoto, M., Chichibu, S.F., Broadbridge, C., He, Y. & Nurmikko, A.V. (2005). Growth of AlGaN nanowires by metalorganic chemical vapor deposition. Appl Phys Lett 87(18), 183108.CrossRefGoogle Scholar
Thillosen, N., Sebald, K., Hardtdegen, H., Meijers, R., Calarco, R., Montanari, S., Kaluza, N., Gutowski, J. & Lüth, H. (2006). The state of strain in single GaN nanocolumns as derived from micro-photoluminescence measurements. Nano Lett 6(4), 704708.CrossRefGoogle ScholarPubMed
Ye, H., Yu, Z.Y., Kodambaka, S. & Shenoy, V.B. (2012). Kinetics of axial composition evolution in multi-component alloy nanowires. Appl Phys Lett 100(26), 263103.CrossRefGoogle Scholar
Zhang, W., Nikiforov, A.Y., Thomidis, C., Woodward, J., Sun, H., Kao, C.-K., Bhattarai, D., Moldawer, A., Zhou, L., Smith, D.J. & Moustakas, T.D. (2012). Molecular beam epitaxy growth of AlGaN quantum wells on 6H-SiC substrates with high internal quantum efficiency. J Vac Sci Technol B Microelectron Nanometer Struc 30(2), 02B119.Google Scholar