Hostname: page-component-7bb8b95d7b-495rp Total loading time: 0 Render date: 2024-09-13T15:08:43.685Z Has data issue: false hasContentIssue false

X-Ray Microanalysis with Penelope

Published online by Cambridge University Press:  02 July 2020

F. Salvat
Affiliation:
Facultat de Física (ECM), Universitat de Barcelona, Diagonal 647., 08028, Barcelona., Spain.
L. Sorbier
Affiliation:
Institute Français du Pétrole, 1 et 4 Avenue de Bois Préau, 92852, Rueil Malmaison, France.
X. Llovet
Affiliation:
Serveis Científico-Tècnics, Univ. Barcelona., Lluis Solé i SabarÍs, 1-3., 08028, Barcelona., Spain.
E. Acosta
Affiliation:
Facultat de Física (ECM), Universitat de Barcelona, Diagonal 647., 08028, Barcelona., Spain. FAMAF, Universidad Nacional de Cordoba., Ciudad Universitaria., 5000, Cόrdoba, Argentina.
Get access

Abstract

Monte Carlo simulation is a suitable tool for the numerical generation of x-ray spectra by electron beams and, more specifically, for the quantification in electron probe microanalysis (EPMA). in this communication we describe the application of the general-purpose code PENELOPE to EPMA. This code simulates electron-photon showers in complex material structures consisting of homogeneous regions of arbitrary composition limited by quadric surfaces. It is devised to cover a wide energy range (from ∼500 eV to about 1 GeV). The interaction models implemented in PENELOPE are based on the most reliable information available. They combine results from first principles calculations (this is the case, e.g., for electron elastic scattering, photon Compton scattering), semiempirical models (in electron inelastic scattering) and information from evaluated data bases. to facilitate the random sampling, the cross sections of various interaction mechanisms are described through analytical expressions, which are adjusted to yield accurate values of relevant transport properties (mass attenuation coefficients, transport mean free paths, stopping powers, . . . ).

Type
Quantitative X-Ray Microanalysis in the Microprobe, in the SEM and in The ESEM:Theory and Practice (Organized by R. Gauvin and E. Lifshin)
Copyright
Copyright © Microscopy Society of America 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Baro, J. et al., Nucl. Instrum. Meth. B 100 (1995) 31CrossRefGoogle Scholar
2.Sempau, J. et al., Nucl. Instrum. Meth. B 132 (1997) 377CrossRefGoogle Scholar
3.Acosta, E., Llovet, X., Coleoni, E., Riveros, J. A. and Salvat, F., J. Appl. Phys., 83 (1998) 6038CrossRefGoogle Scholar
4.Sorbier, L., Rosenberg, E., Merlet, C. and Llovet, X., Mikrochim. Acta, 132 (2000) 189CrossRefGoogle Scholar
5.Bastin, G.F. and Heijligers, H.J.M., X-Ray Spectrom 19 (2000) 2123.0.CO;2-K>CrossRefGoogle Scholar
6.Valovirta, E. et al., Proc. EMAS 2001, Tampere (Finland), 2001Google Scholar