Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-06-10T05:15:15.161Z Has data issue: false hasContentIssue false

Alterations in the Fat Body Cells of Rhinocricus padbergi (Diplopoda) Resulting from Exposure to Substrate Containing Sewage Sludge

Published online by Cambridge University Press:  08 February 2012

Raphael Bastão de Souza
Affiliation:
Department of Biology, Institute of Biosciences, São Paulo State University (UNESP), Av. 24A, 1515, 13506-900, Rio Claro, SP, Brazil
Carmem Silvia Fontanetti*
Affiliation:
Department of Biology, Institute of Biosciences, São Paulo State University (UNESP), Av. 24A, 1515, 13506-900, Rio Claro, SP, Brazil
*
Corresponding author. E-mail: fontanet@rc.unesp.br
Get access

Abstract

The final disposal of residues generated at sewage treatment plants (STPs) has become a major problem for cities, due to the increase in the amount of treated sewage. One of the alternatives for the residue, labeled “sewage sludge,” is its reuse in agriculture and in degraded soil. However, not all pathogens and metals present in it are eliminated during treatment. Diplopods have been used as bioindicators in ecotoxicological tests as they are constantly in close contact with the soil. Owing to this fact, the purpose of this study was to expose specimens of the diplopod Rhinocricus padbergi to substrate containing sewage sludge collected at STPs to analyze morphological alterations in their parietal and perivisceral fat body, where substances are stored. The exposures were held for 7, 15, or 90 days at different concentrations of sewage sludge (control, 1%, 10%, and 50%). The parietal fat body showed no alterations in any of the three exposure periods or concentrations. Alterations in the perivisceral fat body were observed for all exposure periods. According to the results, we suggest that the sludge used has toxic agents responsible for changing the animal's perivisceral fat body.

Type
Biological and Biomedical Applications
Copyright
Copyright © Microscopy Society of America 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Andreoli, C.V. (2001). Resíduos sólidos do saneamento: Processamento, reciclagem e disposição final. Rio de Janeiro, Brazil: ABES.Google Scholar
Arab, A., Zacarin, G.G., Fontanetti, C.S., Camargo-Mathias, M.I., Santos, M.G. & Cabrera, A.C. (2003). Composition of the defensive secretion of the neotropical millipede Rhinocricus padbergi Verhoeff, 1938 (Diplopoda, Spirobolida, Rhinocricidae). Entomotropica 18, 7982.Google Scholar
Beyer, W.N., Pattee, O.H., Sileo, L., Hoffman, D.J. & Mulhern, B.M. (1985). Metal contamination in wildlife living near two zinc smelters. Environ Pollut Ser 38, 6386.Google Scholar
Calligaris, I.B., Boccardo, L., Sanches, M.R. & Fontanetti, C.S. (2005). Morphometric analysis of a population of diplopods of the genus Rhinocricus Karsch, 1881. Folia Biologica 51, 4046.Google ScholarPubMed
Camargo, O.A., Pires, A.M.M. & Bettiol, W. (2008). Lodo na agricultura. Ciência Hoje 42(248), 6870.Google Scholar
CETESB (1999). Aplicação de lodos de sistemas de tratamento biológico em áreas agrícolas—Critérios para projeto e operação. Manual Técnico—P4230. Companhia de Tecnologia de Saneamento Ambiental.Google Scholar
Conama (2006). Resolução 375/2006. Conselho Nacional do Meio Ambiente. Available at http://www.mma.gov.br/port/conama/legiabre.cfm?codleg=506 (accessed June 6, 2008).Google Scholar
Fantazzini, E.R., Fontanetti, C.S. & Camargo-Mathias, M.I. (1998). Anatomy of digestive tube, histology and histochemistry of the foregut and salivary glands of Rhinocricus padbergi (Diplopoda, Rhinocricidae). Arthropoda Selecta 7, 257264.Google Scholar
Fantazzini, E., Fontanetti, C.S. & Camargo-Mathias, M.I. (2002). Midgut of the millipede Rhinodricus padbergi Verhoeff, 1938 (Diplopoda: Spirobolida): Histology and histochemistry. Arthropoda Selecta 11, 135142.Google Scholar
Fontanetti, C.S. & Camargo-Mathias, M.I. (2004). Presence of calcium in oocytes of the diplopod Rhinocricus padbergi Verhoeff (Spirobolida, Rhinocricidae). Acta Histochemica 37, 301306.CrossRefGoogle Scholar
Fontanetti, C.S., Camargo-Mathias, M.I. & Tiritan, B.M.S. (2004). The fat body in Rhinocricus padbergi (Diplopoda, Spirobolida). Iheringia Sér Zool 94(4), 351355.Google Scholar
Fontanetti, C.S., Tiritan, B. & Camargo-Mathias, M.I. (2006). Mineralized bodies in the fat body of Rhinocricus padbergi (Diplopoda). Braz J Morphol Sci 23(3-4), 487493.Google Scholar
Godoy, J.A.P. & Fontanetti, C.S. (2010). Diplopods as bioindicators of soils: Analysis of midgut of individuals maintained in substract containing sewage sludge. Water Air Soil Pollut 210(1-4), 389398.Google Scholar
Gomes, S.B.V., Nascimento, C.W.A. & Biondi, C.M. (2005). Produtividade e composição mineral de plantas de milho em solo adubado com lodo de esgoto. Revista Brasileira de Engenharia Agrícola e Ambiental 11(5), 459465.Google Scholar
Grivicich, I., Regner, A. & Rocha, A.B. (2007). Morte celular por apoptose. Revista Brasileira de Cancerologia 53(3), 335343.Google Scholar
Heikens, A., Peijnenburg, W.J.G.M. & Hendriks, A.J. (2001). Bioaccumulation of heavy metals in terrestrial invertebrates. Environ Pollut 113, 385393.Google Scholar
Hopkin, S.P. (1989). Ecophysiology of Metals in Terrestrial Invertebrates. Barking, UK: Elsevier Applied Science.Google Scholar
Hopkin, S.P. & Read, H.J. (1992). The Biology of Millipedes. New York: Oxford University Press.CrossRefGoogle Scholar
Hopkin, S.P., Watson, K., Martin, M.H. & Mould, M.L. (1985). The assimilation of heavy metals by Lithobius variegatus and Glomeris marginata (Chilopoda; Diplopoda). Bijdr Dierk 55(1), 8894.Google Scholar
Hubert, M. (1975). Sur la nature des accumulations minerales et puriquez chez Cylindroiulus teutonicus Pocock (londinensis CLK, Diplopoda, Iuloidea). CR Acad Sc Paris 281D, 151154.Google Scholar
Ireland, M.P. (1979). Metal accumulation by the earthworms Lumbricus rubellus, Dendrbaena veneta and Eiseniella tetraedra living in heavy metal polluted sites. Environ Pollut 19, 201206.Google Scholar
Junqueira, L.C. & Junqueira, L.M.M.S. (1983). Técnicas Básicas de Citologia e Histologia. São Paulo, Brazil: Livraria Editora Santos.Google Scholar
Kammenga, J.E., Dallinger, R., Donker, M.H., Köhler, H.R., Simonsen, V., Triebskorn, R. & Weeks, J.M. (2000). Biomakers in terrestrial invertebrates for ecotoxicological soil risk assessment. Rev Environ Contam Toxicol 164, 93147.Google Scholar
Köhler, H.R., Körtje, K.H. & Alberti, G. (1995). Content, absorption quantities and intracellular storage sites of heavy metals in Diplopoda (Arthropoda). BioMetals 8, 3746.Google Scholar
Köhler, H.R. & Triebskorn, R. (1998). Assessment of the cytotoxic impact of heavy metals on soil invertebrates using a protocol integrate qualitative and quantitative components. Biomakers 3(2), 109127.Google Scholar
Meyer, T.N. & Da Silva, A.L. (1999). Resposta celular ao estresse. Rev Ass Med Brasil 45(2), 181188.Google Scholar
Miyoshi, A.R., Gabriel, V.A., Fantazzini, E.R. & Fontanetti, C.S. (2005). Microspines in the pylorus of Pseudonannolene tricolor and Rhinocricus padbergi (Arthropoda, Diplopoda). Iheringia 95, 183187.Google Scholar
Nath, B.S. (2000). Changes in carbohydrate metabolism in hemolymph and fat body of the silkworm, Bombyx mori L. exposed to organophosphorus insecticides. Pestic Biochem Phys 68, 15041515.Google Scholar
Nath, B.S., Suresh, A., Varma, B.M. & Kumar, R.P.S. (1997). Changes in protein metabolism in hemolymph and fat body of the silkworm, Bombyx mori (Lepdoptera: Bombycidae) in response to organophosphorus insecticides toxicity. Toxicol Environ Safety 36, 169173.Google Scholar
Nogarol, L.R. & Fontanetti, C.S. (2010). Acute and subchronic exposure of diplopods to substrate containing sewage mud: Tissular responses of the midgut. Micron 41, 239246.Google Scholar
Pearse, A.G.E. (1985). Histochemistry: Theoretical and Applied. Edinburgh, UK: Churchill Livingstone.Google Scholar
Roberts, R.D. & Johnson, M.S. (1978). Dispersal of heavy metals from abandoned mine workings and their transference through terrestrial food chains. Environ Pollut 16, 293310.CrossRefGoogle Scholar
Tsutiya, M.T. (1999). Metais pesados: O principal fator limitante para o uso agrícola de biossólidos das estações de tratamento de esgoto. In 20° Congresso Brasileiro de Engenharia Sanitária e Ambiental, pp. 753761. Rio de Janeiro: ABES.Google Scholar