Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-06-10T19:44:25.776Z Has data issue: false hasContentIssue false

Analysis of Influence of Voltage on Potential Barrier on BiCuVOX and BiTiVOX Ceramics

Published online by Cambridge University Press:  02 April 2013

S.M. Gheno*
Affiliation:
UFSCar, Federal University of Sao Carlos, Department of Materials Engineering, Brazil FATEC, Faculty Technology of Sertãozinho, Brazil
V.L. Pimentel
Affiliation:
LNLS, Brazilian Synchrotron Light Laboratory (LNLS), Brazil
M.R. Morelli
Affiliation:
UFSCar, Federal University of Sao Carlos, Department of Materials Engineering, Brazil
P.I. Paulin Filho
Affiliation:
UFSCar, Federal University of Sao Carlos, Department of Materials Engineering, Brazil
*
*Corresponding author. E-mail: gheno@dema.ufscar.br
Get access

Abstract

The BiMeVOx family of compounds appears to be more attractive for applications at low temperatures when ionic conductivity is the determining parameter. The objective of this study was to analysis the influence of voltage of the behavior of the Schottky barrier in both BiCuVOX and BiTiVOX. The samples were analyzed by atomic force microscopy and electric force microscopy (EFM). EFM experiments were conducted to map the electric field distribution on the surface. The formation of Schottky barriers was observed, and their height and width measured. BiCuVOX samples show a barrier width of 140 nm, and BiTiVOX shows a barrier width of 350 nm. The applied voltage has no effect on the barrier width but increases the peak height as observed in the cantilever frequency as measured with the EFM technique.

Type
Materials Applications
Copyright
Copyright © Microscopy Society of America 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abraham, F., Boivin, J.C., Mairesse, G. & Nowogrocki, G. (1990). The BIMEVOX series: A new family of high performance oxide ion conductors. Sol Stat Ion 4041, 934.CrossRefGoogle Scholar
Anne, M., Bacmann, M., Pernot, E., Abraham, F., Mairesse, G. & Strobel, P. (1992). Structure of new anionic conductors Bi4V2(1-x)M2xO11-3x; M=Cu, Ni. Phys B 180/181, 621623.Google Scholar
Boivin, J.C. & Mairesse, G. (1998). Recent material developments in fast oxide ion conductors. Chem Mater 10(10), 28702888.Google Scholar
Carolan, M.F., Dyer, P.N., Labar, J.M. Sr. & Thorogood, R.M. (1992). Air Products and Chemicals Co. U.S. Patent No. 5,240,473. Alexandria, VA: U.S. Patent and Trademark Office. Google Scholar
Chen, M.S., Hegarty, W.P. & Steyert, W.A. (1992). Air Products and Chemicals, Inc. US Patent No. 5,118,395. Alexandria, VA: U.S. Patent and Trademark Office. Google Scholar
Chmielowiec, J., Paściak, G. & Bujlo, P. (2009). BIMEVOX materials for application in SOFCS. Mater Sci-Poland 27(4/2), 12511256.Google Scholar
Cross, J. (1998). Ceramic fuel cells. Fuel Cell Techn 76, 11–13, 21.Google Scholar
Delmaire, F., Rigole, M., Zhilinskaya, E.A., Aboukais, A., Hubaut, R. & Mairesse, G. (2000). 51V magic angle spinning solid state NMR studies of Bi4V2O11 in oxidized and reduced states. Phys Chem Chem Phys 2, 44774483.Google Scholar
DiCosimo, R., Burrington, J.D. & Grasselli, R.K. (1986). The Standard Oil Company. U.S. Patent No. 4,571,443. Alexandria, VA: U.S. Patent and Trademark Office. Google Scholar
Emel'yanova, Y.V., Shafigina, R.R., Buyanova, E.S., Zhukovskii, V.M., Zainullina, V.M. & Petrova, S.A. (2006). Oxide ion conductors of the BIMEVOX family: Synthesis, structure, and conductivity. J Phys Chem 80(11), 17251730 (Russian).Google Scholar
Emel'yanova, Y.V., Tsygankova, E.N., Petrova, S.A., Buyanova, E.S. & Zhukovskii, V.M. (2007). Synthesis, structure, and conduction of solid solutions BIMEVOX (Me = Cu, Ti)*. J Electrochem 43(6), 737741 (Russian).Google Scholar
Essalim, R., Tanouti, B., Bonnet, J.P. & Reau, J.M. (1992). Elaboration and electrical properties of Bi4V2-x Co x O11-3x/2 (0,20 ≤ x ≤ 0,55) ceramics with the γ-Bi4V2O11 type structure. Mater Lett 13, 382386.CrossRefGoogle Scholar
Gates, B.C., Katzer, J.R. & Schuit, G.C.A. (1979). Chemistry of Catalytic Processes, pp. 325388. New York: McGraw-Hill.Google Scholar
Gheno, S.M., Hasegawa, H.L. & Paulin Filho, P.I. (2007). Direct observation of potential barrier behavior in yttrium–barium titanate observed by electrostactic force microscopy. Scripta Mater 56(6), 545548.Google Scholar
Godinho, M.J., Bueno, P.R., Orlandi, M.O., Leite, E.R. & Longo, E. (2003). Ionic conductivity of Bi4Ti0.2V1.8O10.7 polycrystalline ceramics obtained by the polymeric precursor route. Mater Lett 57, 25402544.CrossRefGoogle Scholar
Joubert, O., Jouanneaux, A., Ganne, M. & Tournoux, M. (1992). A new bismuth vanadium antimony oxide related to aurivillius phases (Bi4V1,5Sb0,5O10,7). Mater Res Bull 27, 12351242.CrossRefGoogle Scholar
Kendall, K.R., Navas, C., Thomas, J.K. & Zur Loye, H.C. (1996). Recent developments in oxide ion conductors: Aurivillius phases. Chem Mater 8(3), 642649.CrossRefGoogle Scholar
Kozhukharov, V., Machkova, M. & Brashkova, N. (1999). Dense ceramic membranes: A review of the state of the art. Boletin de la Sociedad Española de Cerámica y Vidrio 38(1), 514.Google Scholar
Lee, C.K., Bay, B.H. & West, A.R. (1996). New oxide ion conducting solid electrolytes, Bi4V2O11:M; M= B, Al, Cr, Y, La. J Mater Chem 6(3), 331335.CrossRefGoogle Scholar
Magonov, S.N. & Whangbo, M.H. (1996). Surface Analysis with STM and AFM—Experimental and Theorical Aspects of Image Analysis, pp. 116128. New York: VCH, Weinheim.Google Scholar
Meyer, E., Hug, H.J. & Bennewitz, R. (2003). Scanning Probe Microscopy—The Lab on a Tip, p. 29. New York: Springer.Google Scholar
Minh, N.Q. (1993). Ceramic fuel cells. J Am Ceram Soc 76(3), 563568.Google Scholar
Morelli, M.R., Maestrelli, S.C. & Paulin Filho, P.I. (1999). Condutores iônicos do tipo BIMEVOX obtidos pelo processo de fusão. Patent number PI 9901973-6. Google Scholar
Murugesamoorthi, K.A., Srinivasan, S. & Appleby, A.J. (1993). Research, development and demonstration of solid oxide fuel cell systems. In Fuel Cell Systems, Blomen, L.J.M. & Mugerwa, M.N. (Eds.), pp. 465491. New York: Plenum Press.CrossRefGoogle Scholar
Paulin Filho, P.I., Morelli, M.R. & Maestrelli, S.C. (2000). Bimevox type ionic conductors produced by melting process. Mat Res Innovat 3, 292296.Google Scholar
Paydar, M.H., Hadian, A.M. & Fafilek, G. (2006). A new look at oxygen pumping characteristics of BICUVOX.1 solid electrolyte. J Mater Sci 4, 19531957.Google Scholar
Sarid, D. (1991). Scanning Force Microscopy with Applications to Electric, Magnetic, and Atomic Forces, pp. 129151. New York: Oxford University Press.Google Scholar
Sharma, V., Shukla, A.K. & Gopalakrishnan, J. (1992). Effect of aliovalent-cation substituion on the oxygen-ion conductivity of Bi4V2O11 . Sol Stat Ion 58, 359362.Google Scholar
Simner, S.P., Suarez-Sandoval, D., Mackenzie, J.D. & Dunn, B. (1997). Synthesis, densification and conductivity characteristics of BICUVOX oxigen-ion-conducting ceramics. J Am Ceram Soc 80(10), 25632568.CrossRefGoogle Scholar
Subbarao, E.C. & Maiti, H.S. (1984). Solid electrolytes with oxigen ion conduction. Solid State Ionics 11, 317338.Google Scholar