No CrossRef data available.
Article contents
Approaches Taken to Streamline and Consolidate Large Dataset Processing Techniques, with a Focus on Ptychography
Published online by Cambridge University Press: 22 July 2022
Abstract
An abstract is not available for this content so a preview has been provided. As you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
- Type
- Artificial Intelligence, Instrument Automation, And High-dimensional Data Analytics for Microscopy and Microanalysis
- Information
- Copyright
- Copyright © Microscopy Society of America 2022
References
Simmhan, YL, Plale, B and Gannon, D, ACM SIGMOD Record 34 (2005), p. 31. doi:10.1145/1084805.1084812CrossRefGoogle Scholar
Draxl, C and Scheffler, M, MRS Bulletin 43 (2018), p. 676. doi:10.1557/mrs.2018.208CrossRefGoogle Scholar
Mittelberger, A et al. , Microsc. Microanal. 27 (Suppl 1) (2021), p. 1064. doi:10.1017/S1431927621004013CrossRefGoogle Scholar
Haas, B et al. , Microsc. Microanal. 27 (Suppl 1) (2021), p. 994. doi:10.1017/S1431927621003779CrossRefGoogle Scholar
Yoo, AB, Jette, MA, and Grondona, M in “Job Scheduling Strategies for Parallel Processing”, ed. Feitelson, D, Rudolph, L, and Schwiegelshohn, U, (Springer, Berlin) p.44.Google Scholar
Di Tommaso, P et al. , Nat. Biotechnol. 35 (2017), p. 316. doi:10.1038/nbt.3820CrossRefGoogle Scholar
The authors acknowledge financial support from the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) - Project-IDs 414984028 (SFB 1404), 182087777 (SFB 951), and 460197019 (FAIRmat).Google Scholar
You have
Access