Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-06-10T21:59:29.543Z Has data issue: false hasContentIssue false

Comparison of Orientation Mapping in SEM and TEM

Published online by Cambridge University Press:  25 June 2020

Joshua D. Sugar*
Affiliation:
Sandia National Laboratories, Livermore, CA94550, USA
Joseph T. McKeown
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA94550, USA
Dhego Banga
Affiliation:
Sandia National Laboratories, Livermore, CA94550, USA
Joseph R. Michael
Affiliation:
Sandia National Laboratories, Albuquerque, NM84550, USA
*
*Author for correspondence: Joshua D. Sugar, E-mail: jdsugar@sandia.gov
Get access

Abstract

Multiple experimental configurations for performing nanoscale orientation mapping are compared to determine their fidelity to the true microstructure of a sample. Transmission Kikuchi diffraction (TKD) experiments in a scanning electron microscope (SEM) and nanobeam diffraction (NBD) experiments in a transmission electron microscope (TEM) were performed on thin electrodeposited hard Au films with two different microstructures. The Au samples either had a grain size that is >50 or <20 nm. The same regions of the samples were measured with TKD apparatuses at 30 kV in an SEM with detectors in the horizontal and vertical configurations and in the TEM at 300 kV. Under the proper conditions, we demonstrate that all three configurations can produce data of equivalent quality. Each method has strengths and challenges associated with its application and representation of the true microstructure. The conditions needed to obtain high-quality data for each acquisition method and the challenges associated with each are discussed.

Type
Software and Instrumentation
Copyright
Copyright © Microscopy Society of America 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbasi, M, Kim, DI, Guim, HU, Hosseini, M, Danesh-Manesh, H & Abbasi, M (2015). Application of transmitted Kikuchi diffraction in studying nano-oxide and ultrafine metallic grains. ACS Nano 9(11), 1099111002.CrossRefGoogle ScholarPubMed
Bober, DB, Kumar, M & Rupert, TJ (2015). Nanocrystalline grain boundary engineering: Increasing Sigma 3 boundary fraction in pure Ni with thermomechanical treatments. Acta Mater 86, 4354.CrossRefGoogle Scholar
Borrajo-Pelaez, R & Hedström, P (2018). Recent developments of crystallographic analysis methods in the scanning electron microscope for applications in metallurgy. Crit Rev Solid State Mater Sci 43(6), 455474.CrossRefGoogle Scholar
Charpagne, MA, Strub, F & Pollock, TM (2019). Accurate reconstruction of EBSD datasets by a multimodal data approach using an evolutionary algorithm. Mater Charact 150, 184198.CrossRefGoogle Scholar
Chen, D, Kuo, JC & Wu, WT (2011). Effect of microscopic parameters on EBSD spatial resolution. Ultramicroscopy 111(9–10), 14881494.CrossRefGoogle ScholarPubMed
Chen, YH, Park, SU, Wei, D, Newstadt, G, Jackson, MA, Simmons, JP, De Graef, M & Hero, AO (2015). A dictionary approach to electron backscatter diffraction indexing. Microsc Microanal 21(3), 739752.CrossRefGoogle ScholarPubMed
Dingley, D (2004). Progressive steps in the development of electron backscatter diffraction and orientation imaging microscopy. J Microsc (Oxford) 213, 214224.CrossRefGoogle ScholarPubMed
Dingley, DJ & Randle, V (1992). Microtexture determination by electron back-scatter diffraction. J Mater Sci 27(17), 45454566.CrossRefGoogle Scholar
Foden, A, Collins, DM, Wilkinson, AJ & Britton, TB (2019). Indexing electron backscatter diffraction patterns with a refined template matching approach. Ultramicroscopy 207, 112845.CrossRefGoogle ScholarPubMed
Friedrich, T, Bochmann, A, Dinger, J & Teichert, S (2018). Application of the pattern matching approach for EBSD calibration and orientation mapping, utilising dynamical EBSP simulations. Ultramicroscopy 184, 4451.CrossRefGoogle ScholarPubMed
Fundenberger, JJ, Bouzy, E, Goran, D, Guyon, J, Morawiec, A & Yuan, H (2015). Transmission Kikuchi diffraction (TKD) via a horizontally positioned detector. Microsc Microanal 21(S3), 11011102.CrossRefGoogle Scholar
Fundenberger, JJ, Bouzy, E, Goran, D, Guyon, J, Yuan, H & Morawiec, A (2016). Orientation mapping by transmission-SEM with an on-axis detector. Ultramicroscopy 161, 1722.CrossRefGoogle ScholarPubMed
Goehner, RP & Michael, JR (1996). Phase identification in a scanning electron microscope using backscattered electron Kikuchi patterns. J Res Natl Inst Stand Technol 101(3), 301308.CrossRefGoogle Scholar
Goldstein, JI, Newbury, DE, Michael, JR, Ritchie, NW, Scott, JHJ & Joy, DC (2018). Scanning Electron Microscopy and X-Ray Microanalysis. New York: Springer.CrossRefGoogle Scholar
Groeber, MA, Haley, BK, Uchic, MD, Dimiduk, DM & Ghosh, S (2006). 3D reconstruction and characterization of polycrystalline microstructures using a FIB-SEM system. Mater Charact 57(4–5), 259273.CrossRefGoogle Scholar
Humphreys, FJ (2001). Review – Grain and subgrain characterisation by electron backscatter diffraction. J Mater Sci 36(16), 38333854.CrossRefGoogle Scholar
Isabell, TC & Dravid, VP (1997). Resolution and sensitivity of electron backscattered diffraction in a cold field emission gun SEM. Ultramicroscopy 67(1–4), 5968.CrossRefGoogle Scholar
Jackson, MA, Pascal, E & De Graef, M (2019). Dictionary indexing of electron back-scatter diffraction patterns: A hands-on tutorial. Integr Mater Manuf Innov 8(2), 226246.CrossRefGoogle Scholar
Jha, D, Singh, S, Al-Bahrani, R, Liao, WK, Choudhary, A, De Graef, M & Agrawal, A (2018). Extracting grain orientations from EBSD patterns of polycrystalline materials using convolutional neural networks. Microsc Microanal 24(5), 497502.CrossRefGoogle ScholarPubMed
Kaufmann, K, Zhu, CY, Rosengarten, AS, Maryanovsky, D, Harrington, TJ, Marin, E & Vecchio, KS (2020). Crystal symmetry determination in electron diffraction using machine learning. Science 367(6477), 564.CrossRefGoogle ScholarPubMed
Keller, RR & Geiss, RH (2012). Transmission EBSD from 10 nm domains in a scanning electron microscope. J Microsc 245(3), 245251.CrossRefGoogle Scholar
Lassen, NCK (1998). Automatic high-precision measurements of the location and width of Kikuchi bands in electron backscatter diffraction patterns. J Microsc (Oxford) 190, 375391.CrossRefGoogle Scholar
Liu, HH, Schmidt, S, Poulsen, HF, Godfrey, A, Liu, ZQ, Sharon, JA & Huang, X (2011). Three-dimensional orientation mapping in the transmission electron microscope. Science 332(6031), 833834.CrossRefGoogle ScholarPubMed
Liu, JL, Lozano-Perez, S, Wilkinson, AJ & Grovenor, CRM (2019). On the depth resolution of transmission Kikuchi diffraction (TKD) analysis. Ultramicroscopy 205, 512.CrossRefGoogle ScholarPubMed
Marquardt, K, De Graef, M, Singh, S, Marquardt, H, Rosenthal, A & Koizuimi, S (2017). Quantitative electron backscatter diffraction (EBSD) data analyses using the dictionary indexing (DI) approach: Overcoming indexing difficulties on geological materials. Am Miner 102(9), 18431855.CrossRefGoogle Scholar
McDonald, SA, Reischig, P, Holzner, C, Lauridsen, EM, Withers, PJ, Merkle, AP & Feser, M (2015). Non-destructive mapping of grain orientations in 3D by laboratory X-ray microscopy. Sci Rep 5, 14665.CrossRefGoogle ScholarPubMed
Michael, JR (2000). Phase identification using electron backscatter diffraction in the scanning electron microscope. In Electron Backscatter Diffraction in Materials Science, Schwartz, AJ, Kumar, M & Adams, BL (Eds.), pp. 7589. Boston, MA: Springer US.CrossRefGoogle Scholar
Moeck, P, Rouvimov, S, Rauch, EF, Veron, M, Kirmse, H, Hausler, I, Neumann, W, Bultreys, D, Maniette, Y & Nicolopoulos, S (2011). High spatial resolution semi-automatic crystallite orientation and phase mapping of nanocrystals in transmission electron microscopes. Cryst Res Technol 46(6), 589606.CrossRefGoogle Scholar
Niessen, F, Burrows, A & Fanta, ABD (2018). A systematic comparison of on-axis and off-axis transmission Kikuchi diffraction. Ultramicroscopy 186, 158170.CrossRefGoogle ScholarPubMed
Nishikawa, S & Kikuchi, S (1928 a). Diffraction of cathode rays by calcite. Nature 122, 726726.CrossRefGoogle Scholar
Nishikawa, S & Kikuchi, S (1928 b). Diffraction of cathode rays by mica. Nature 121, 10191020.CrossRefGoogle Scholar
Prior, DJ, Boyle, AP, Brenker, F, Cheadle, MC, Day, A, Lopez, G, Peruzzo, L, Potts, GJ, Reddy, S, Spiess, R, Timms, NE, Trimby, P, Wheeler, J & Zetterstrom, L (1999). The application of electron backscatter diffraction and orientation contrast imaging in the SEM to textural problems in rocks. Am Miner 84(11–12), 17411759.CrossRefGoogle Scholar
Ram, F & De Graef, M (2018). Phase differentiation by electron backscatter diffraction using the dictionary indexing approach. Acta Mater 144, 352364.CrossRefGoogle Scholar
Ram, F, Wright, S, Singh, S & De Graef, M (2017). Error analysis of the crystal orientations obtained by the dictionary approach to EBSD indexing. Ultramicroscopy 181, 1726.CrossRefGoogle ScholarPubMed
Rauch, EF & Dupuy, L (2005). Rapid spot diffraction patterns identification through template matching. Arch Metall Mater 50(1), 8799.Google Scholar
Rauch, EF, Portillo, J, Nicolopoulos, S, Bultreys, D, Rouvimov, S & Moeck, P (2010). Automated nanocrystal orientation and phase mapping in the transmission electron microscope on the basis of precession electron diffraction. Z Kristallogr Cryst Mater 225(2–3), 103109.Google Scholar
Rauch, EF & Veron, M (2014). Automated crystal orientation and phase mapping in TEM. Mater Charact 98, 19.CrossRefGoogle Scholar
Ren, SX, Kenik, EA, Alexander, KB & Goyal, A (1998). Exploring spatial resolution in electron back-scattered diffraction experiments via Monte Carlo simulation. Microsc Microanal 4(1), 1522.CrossRefGoogle ScholarPubMed
Rice, KP, Keller, RR & Stoykovich, MP (2014). Specimen-thickness effects on transmission Kikuchi patterns in the scanning electron microscope. J Microsc 254(3), 129136.CrossRefGoogle ScholarPubMed
Schwartz, AJ, Kumar, M, Adams, BL & Field, DP (2009). Electron Backscatter Diffraction in Materials Science. New York, NY: Springer.CrossRefGoogle Scholar
Schwarzer, RA (2003). Automated grain orientation measurement by backscatter Kikuchi diffraction. Phys Met Metallogr+ 96, S104S115.Google Scholar
Schwarzer, RA, Field, DP, Adams, BL, Kumar, M & Schwartz, AJ (2009). Present state of electron backscatter diffraction and prospective developments. In Electron Backscatter Diffraction in Materials Science, Schwartz, AJ, Kumar, M, Adams, BL & Field, DP (Eds.), pp. 120. Boston, MA: Springer US.Google Scholar
Shen, YT, Xu, JC, Zhang, YS, Wang, YZ, Zhang, JM, Yu, BJ, Zeng, Y & Miao, H (2019). Spatial resolutions of on-axis and off-axis transmission Kikuchi diffraction methods. Appl Sci (Basel) 9, 21.Google Scholar
Sneddon, G, Trimby, P & Cairney, J (2017). The influence of microscope and specimen parameters on the spatial resolution of transmission Kikuchi diffraction. Microsc Microanal 23(S1), 532533.CrossRefGoogle Scholar
Sneddon, GC, Trimby, PW & Cairney, JM (2016). Transmission Kikuchi diffraction in a scanning electron microscope: A review. Mat Sci Eng R 110, 112.CrossRefGoogle Scholar
Tao, XD & Eades, A (2005). Measurement and mapping of small changes of crystal orientation by electron backscattering diffraction. Microsc Microanal 11(4), 341353.CrossRefGoogle ScholarPubMed
Trimby, PW (2012). Orientation mapping of nanostructured materials using transmission Kikuchi diffraction in the scanning electron microscope. Ultramicroscopy 120, 1624.CrossRefGoogle ScholarPubMed
Trimby, PW, Cao, Y, Chen, ZB, Han, S, Hemker, KJ, Lian, JS, Liao, XZ, Rottmann, P, Samudrala, S, Sun, JL, Wang, JT, Wheeler, J & Cairney, JM (2014). Characterizing deformed ultrafine-grained and nanocrystalline materials using transmission Kikuchi diffraction in a scanning electron microscope. Acta Mater 62, 6980.CrossRefGoogle Scholar
Valery, A, Rauch, EF, Clement, L & Lorut, F (2017). Retrieving overlapping crystals information from TEM nano-beam electron diffraction patterns. J Microsc 268(2), 208218.CrossRefGoogle ScholarPubMed
van Bremen, R, Gomes, DR, de Jeer, LTH, Ocelik, V & De Hosson, JTM (2016). On the optimum resolution of transmission-electron backscattered diffraction (t-EBSD). Ultramicroscopy 160, 256264.CrossRefGoogle Scholar
Viladot, D, Veron, M, Gemmi, M, Peiro, F, Portillo, J, Estrade, S, Mendoza, J, Llorca-Isern, N & Nicolopoulos, S (2013). Orientation and phase mapping in the transmission electron microscope using precession-assisted diffraction spot recognition: State-of-the-art results. J Microsc 252(1), 2334.CrossRefGoogle ScholarPubMed
Vincent, R & Midgley, PA (1994). Double conical beam-rocking system for measurement of integrated electron-diffraction intensities. Ultramicroscopy 53(3), 271282.CrossRefGoogle Scholar
Wilkinson, AJ, Meaden, G & Dingley, DJ (2006). High-resolution elastic strain measurement from electron backscatter diffraction patterns: New levels of sensitivity. Ultramicroscopy 106(4–5), 307313.CrossRefGoogle Scholar
Wright, SI & Dingley, DJ (1998). Orientation imaging in the transmission electron microscope. Mater Sci Forum 273–275, 209214.CrossRefGoogle Scholar
Wright, SI, Nowell, MM & Field, DP (2011). A review of strain analysis using electron backscatter diffraction. Microsc Microanal 17(3), 316329.CrossRefGoogle ScholarPubMed
Zaefferer, S (2000). New developments of computer-aided crystallographic analysis in transmission electron microscopy. J Appl Crystallogr 33, 1025.CrossRefGoogle Scholar
Zaefferer, S (2002). Computer-aided crystallographic analysis in the TEM. Adv Imag Elect Phys 125, 355415.CrossRefGoogle Scholar
Zaefferer, S (2007). On the formation mechanisms, spatial resolution and intensity of backscatter Kikuchi patterns. Ultramicroscopy 107(2–3), 254266.CrossRefGoogle ScholarPubMed
Zaefferer, S (2011). A critical review of orientation microscopy in SEM and TEM. Cryst Res Technol 46(6), 607628.CrossRefGoogle Scholar
Zhu, CY, Kaufmann, K & Vecchio, K (2019). Automated reconstruction of spherical Kikuchi maps. Microsc Microanal 25(4), 912923.CrossRefGoogle ScholarPubMed