Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-25T13:22:14.611Z Has data issue: false hasContentIssue false

Component Detection and Evaluation Framework (CDEF): A Semantic Annotation Tool

Published online by Cambridge University Press:  30 July 2020

Nathan Jessurun
Affiliation:
University of Florida, Gainesville, Florida, United States
Olivia Paradis
Affiliation:
University of Florida, Gainesville, Florida, United States
Alexandra Roberts
Affiliation:
University of Florida, Bradenton, Florida, United States
Navid Asadizanjani
Affiliation:
University of Florida, Gainesville, Florida, United States

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Image labeling is the process of manually assigning a class to subregions within an image for machine learning applications. When these subregions are complex shapes, this process is known as semantic segmentation. We propose a new software application, the Component Detection and Evaluation Framework (CDEF), for creating such semantic labels. The benefits of CDEF over existing tools are highlighted, and further improvements are proposed.

Type
Advances in Modeling, Simulation, and Artificial Intelligence in Microscopy and Microanalysis for Physical and Biological Systems
Copyright
Copyright © Microscopy Society of America 2020

References

Hanbury, A., J. Vis. Lang. Comput., vol. 19, no. 5, pp. 617627, Oct. 2008 10.1016/j.jvlc.2008.01.002CrossRefGoogle Scholar
Azhagan, M. et al. , in ISTFA 2019: Proceedings of the 45th International Symposium for Testing and Failure Analysis, 2019, p. 256.Google Scholar
Ferguson, M. K., Ronay, A., Lee, Y.-T. T., and Law, Kincho H., Smart Sustain. Manuf. Syst., vol. 2, 2018 10.1520/SSMS20180033CrossRefGoogle Scholar
Anagnostopoulos, C., Vergados, D., Kayafas, E., Loumos, V., and Stassinopoulos, G., J. Vis. Comput. Animat., vol. 12, no. 1, pp. 3144, 2001 10.1002/vis.245CrossRefGoogle Scholar
Anagnostopoulos, C. et al. , Math. Comput. Simul., vol. 60, no. 3, pp. 389400, Sep. 2002 10.1016/S0378-4754(02)00031-9CrossRefGoogle Scholar
Adem, K., Orhan, U., and Hekim, M., Expert Syst. Appl., vol. 42, no. 7, pp. 3785–3789, May 2015Google Scholar
Gatos, B., Ntzios, K., Pratikakis, I., Petridis, S., Konidaris, T., and Perantonis, S. J., in Document Analysis Systems VI, Berlin, Heidelberg, 2004, pp. 637410.1007/978-3-540-28640-0_7CrossRefGoogle Scholar
Kesiman, M. W. A., Burie, J.-C., and Ogier, J.-M., in 2016 15th International Conference on Frontiers in Handwriting Recognition (ICFHR), 2016, pp. 325–330Google Scholar
Jain, A. K. and Bhattacharjee, S., Mach. Vis. Appl., vol. 5, no. 3, pp. 169184, Jun. 1992 10.1007/BF02626996CrossRefGoogle Scholar
Taxt, T., Flynn, P. J., and Jain, A. K., IEEE Trans. Pattern Anal. Mach. Intell., vol. 11, no. 12, pp. 13221329, Dec. 1989 10.1109/34.41371CrossRefGoogle Scholar
Fujisawa, H., Nakano, Y., and Kurino, K., Proc. IEEE, vol. 80, no. 7, pp. 10791092, Jul. 1992 10.1109/5.156471CrossRefGoogle Scholar
Seifert, S. et al. , Proc. SPIE vol. 7628, p. 762808, Mar. 2010 10.1117/12.844207CrossRefGoogle Scholar
Rajchl, M. et al. , IEEE Trans. Med. Imaging, vol. 36, no. 2, pp. 674683, Feb. 2017 10.1109/TMI.2016.2621185CrossRefGoogle Scholar
Yushkevich, P. A. et al. , NeuroImage, vol. 31, no. 3, pp. 11161128, Jul. 2006 10.1016/j.neuroimage.2006.01.015CrossRefGoogle Scholar
Iakovidis, D. K., Goudas, T., Smailis, C., and Maglogiannis, I., The Scientific World Journal, 2014.Google Scholar