Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-19T11:33:26.476Z Has data issue: false hasContentIssue false

Detection of Single Atoms and Buried Defects in Three Dimensions by Aberration-Corrected Electron Microscope with 0.5-Å Information Limit

Published online by Cambridge University Press:  16 September 2008

C. Kisielowski
Affiliation:
National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, One Cyclotron Rd., Berkeley, CA 94720, USA
B. Freitag
Affiliation:
FEI Company, Eindhoven, Building AAE, Achtseweg Noord 5, P.O. Box 80066, 5600 KA Eindhoven, The Netherlands
M. Bischoff
Affiliation:
FEI Company, Eindhoven, Building AAE, Achtseweg Noord 5, P.O. Box 80066, 5600 KA Eindhoven, The Netherlands
H. van Lin
Affiliation:
FEI Company, Eindhoven, Building AAE, Achtseweg Noord 5, P.O. Box 80066, 5600 KA Eindhoven, The Netherlands
S. Lazar
Affiliation:
FEI Company, Eindhoven, Building AAE, Achtseweg Noord 5, P.O. Box 80066, 5600 KA Eindhoven, The Netherlands
G. Knippels
Affiliation:
FEI Company, Eindhoven, Building AAE, Achtseweg Noord 5, P.O. Box 80066, 5600 KA Eindhoven, The Netherlands
P. Tiemeijer
Affiliation:
FEI Company, Eindhoven, Building AAE, Achtseweg Noord 5, P.O. Box 80066, 5600 KA Eindhoven, The Netherlands
M. van der Stam
Affiliation:
FEI Company, Eindhoven, Building AAE, Achtseweg Noord 5, P.O. Box 80066, 5600 KA Eindhoven, The Netherlands
S. von Harrach
Affiliation:
FEI Company, Eindhoven, Building AAE, Achtseweg Noord 5, P.O. Box 80066, 5600 KA Eindhoven, The Netherlands
M. Stekelenburg
Affiliation:
FEI Company, Eindhoven, Building AAE, Achtseweg Noord 5, P.O. Box 80066, 5600 KA Eindhoven, The Netherlands
M. Haider
Affiliation:
CEOS GmbH, Englerstr. 28, D-69126 Heidelberg, Germany
S. Uhlemann
Affiliation:
CEOS GmbH, Englerstr. 28, D-69126 Heidelberg, Germany
H. Müller
Affiliation:
CEOS GmbH, Englerstr. 28, D-69126 Heidelberg, Germany
P. Hartel
Affiliation:
CEOS GmbH, Englerstr. 28, D-69126 Heidelberg, Germany
B. Kabius
Affiliation:
Argonne National Laboratory, Electron Microscopy Center, Argonne, IL 10329, USA
D. Miller
Affiliation:
Argonne National Laboratory, Electron Microscopy Center, Argonne, IL 10329, USA
I. Petrov
Affiliation:
Center for Microanalysis of Materials, University of Illinois, 104 S. Goodwin Avenue, Urbana, IL 61801, USA
E.A. Olson
Affiliation:
Center for Microanalysis of Materials, University of Illinois, 104 S. Goodwin Avenue, Urbana, IL 61801, USA
T. Donchev
Affiliation:
Center for Microanalysis of Materials, University of Illinois, 104 S. Goodwin Avenue, Urbana, IL 61801, USA
E.A. Kenik
Affiliation:
Materials Science and Technology Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831, USA
A.R. Lupini
Affiliation:
Materials Science and Technology Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831, USA
J. Bentley
Affiliation:
Materials Science and Technology Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831, USA
S.J. Pennycook
Affiliation:
Materials Science and Technology Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831, USA
I.M. Anderson
Affiliation:
Materials Science and Technology Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831, USA
A.M. Minor
Affiliation:
National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, One Cyclotron Rd., Berkeley, CA 94720, USA
A.K. Schmid
Affiliation:
National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, One Cyclotron Rd., Berkeley, CA 94720, USA
T. Duden
Affiliation:
National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, One Cyclotron Rd., Berkeley, CA 94720, USA
V. Radmilovic
Affiliation:
National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, One Cyclotron Rd., Berkeley, CA 94720, USA
Q.M. Ramasse
Affiliation:
National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, One Cyclotron Rd., Berkeley, CA 94720, USA
M. Watanabe
Affiliation:
National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, One Cyclotron Rd., Berkeley, CA 94720, USA
R. Erni
Affiliation:
National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, One Cyclotron Rd., Berkeley, CA 94720, USA
E.A. Stach
Affiliation:
National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, One Cyclotron Rd., Berkeley, CA 94720, USA
P. Denes
Affiliation:
National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, One Cyclotron Rd., Berkeley, CA 94720, USA
U. Dahmen*
Affiliation:
National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, One Cyclotron Rd., Berkeley, CA 94720, USA
*
Corresponding Author. E-mail: UDahmen@lbl.gov
Get access

Abstract

The ability of electron microscopes to analyze all the atoms in individual nanostructures is limited by lens aberrations. However, recent advances in aberration-correcting electron optics have led to greatly enhanced instrument performance and new techniques of electron microscopy. The development of an ultrastable electron microscope with aberration-correcting optics and a monochromated high-brightness source has significantly improved instrument resolution and contrast. In the present work, we report information transfer beyond 50 pm and show images of single gold atoms with a signal-to-noise ratio as large as 10. The instrument's new capabilities were exploited to detect a buried Σ3 {112} grain boundary and observe the dynamic arrangements of single atoms and atom pairs with sub-angstrom resolution. These results mark an important step toward meeting the challenge of determining the three-dimensional atomic-scale structure of nanomaterials.

Type
Materials Applications
Copyright
Copyright © Microscopy Society of America 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bals, S., Kilaas, R. & Kisielowski, C. (2005). Nonlinear imaging using annular dark field TEM. Ultramicroscopy 104, 281289.CrossRefGoogle ScholarPubMed
Borisevich, A.Y., Lupini, A.R., Travaglini, S. & Pennycook, S.J. (2006). Depth sectioning of aligned crystals with the aberration-corrected scanning transmission electron microscope. J Electron Microsc 55, 712.CrossRefGoogle Scholar
Coene, W., Janssen, G., Op De Beeck, M. & Van Dyck, D. (1992). Phase retrieval through focus variation for ultra-resolution in field-emission transmission electron microscopy. Phys Rev Lett 69, 37433746.CrossRefGoogle ScholarPubMed
Cowley, J.M. & Moodie, A.F. (1957). The scattering of electrons by atoms and crystals. I. A new theoretical approach. Acta Cryst 10, 609619.CrossRefGoogle Scholar
den Dekker, A.J. & van den Bos, A. (1997). Resolution: A survey. J Opt Soc Am A 14, 547557.CrossRefGoogle Scholar
Feynman, R.P. (1960). There's plenty of room at the bottom. Eng Sci 23, 2223.Google Scholar
Frigo, S.P., Levine, Z.H. & Zaluzec, N.J. (2002). Submicron imaging of buried integrated circuit structures using scanning confocal electron microscopy. Appl Phys Lett 81, 21122114CrossRefGoogle Scholar
Haider, M., Uhlemann, S., Schwan, E., Rose, H., Kabius, B. & Urban, K. (1998). Electron microscopy image enhanced. Nature 392, 768769.CrossRefGoogle Scholar
Haider, M., Uhlemann, S. & Zach, J. (2000). Upper limits for the residual aberrations of a high-resolution aberration-corrected STEM. Ultramicroscopy 81, 163175.CrossRefGoogle ScholarPubMed
Hetherington, C.J.D., Chang, L-Y., Nellist, P.D., Gontard, L.C., Dunin-Borkowski, R. & Kirkland, A.I. (2008). High-resolution TEM and the application of direct and indirect aberration-correction. Microsc Microanal 14, 6067.CrossRefGoogle ScholarPubMed
Hsieh, W.K., Chen, F.R., Kai, J.J. & Kirkland, A.I. (2004). Resolution extension and exit wave reconstruction in complex HREM. Ultramicroscopy 98, 99114.CrossRefGoogle ScholarPubMed
Kimoto, K., Nakamura, K., Aizawa, S., Isakozawa, S. & Matsui, Y. (2007). Development of dedicated STEM with high stability. J Electron Microsc 56, 1720.CrossRefGoogle ScholarPubMed
Kisielowski, C., Hetherington, C.J.D., Wang, Y.C., Kilaas, R., O'Keefe, M.A. & Thust, A. (2001). Imaging columns of the light elements carbon, nitrogen and oxygen with sub-Ångstrom resolution. Ultramicroscopy 89, 243263.CrossRefGoogle ScholarPubMed
Lentzen, M. (2008). Contrast transfer and limits for sub-Ångstrom high-resolution transmission electron microscopy. Microsc Microanal 14, 1626.CrossRefGoogle ScholarPubMed
Muller, A.D., Fitting Kourkoutis, L., Murfitt, M., Song, J.H., Hwang, H.Y., Silcox, J., Dellby, N. & Krivanek, O.L. (2008). Atomic-scale chemical imaging of composition and bonding by aberration-corrected microscopy. Science 319, 10731076.CrossRefGoogle ScholarPubMed
Müller, H., Uhlemann, S., Hartel, P. & Haider, M. (2006). Advancing the hexapole C s-corrector for the scanning transmission electron microscope. Microsc Microanal 12, 442455.CrossRefGoogle ScholarPubMed
Nellist, P.D., Chisholm, M.F., Dellby, N., Krivanek, O.L., Murfitt, M.F., Szilagyi, Z.S., Lupini, A.R., Borisevich, A., Sides, W.H. & Pennycook, S.J. (2004). Direct sub-angstrom imaging of a crystal lattice. Science 305, 1741.CrossRefGoogle ScholarPubMed
Nellist, P.D., Cosgriff, E.C., Behan, G. & Kirkland, A.I. (2008). Imaging modes for scanning confocal electron microscopy in a double aberration-corrected transmission electron microscope. Micros Microanal 14, 8288.CrossRefGoogle Scholar
Peng, Y., Oxley, M.P., Lupini, A.R., Chisholm, M.F. & Pennycook, S.J. (2008). Spatial resolution and information transfer in scanning transmission electron microscopy. Microsc Microanal 14, 3647.CrossRefGoogle ScholarPubMed
Sawada, H., Hosokawa, F., Kaneyama, T., Ishizawa, T., Terao, M., Kawazoe, M., Sannomiya, T., Tomita, T., Kondo, Y., Tanaka, T., Oshima, Y., Tanishiro, Y., Yamamoto, N. & Takayanagi, K. (2007). Achieving 63pm resolution in scanning transmission electron microscope with spherical aberration corrector. Japan J Appl Phys 46, L568L570.CrossRefGoogle Scholar
Scherzer, O. (1936). Über einige Fehler von Elektronenlinsen. Z Phys 101, 593603.CrossRefGoogle Scholar
Smith, D.J. (1997). The realization of atomic resolution with the electron microscope. Rep Prog Phys 60, 15131580.CrossRefGoogle Scholar
Smith, D.J. (2008). Development of aberration-corrected electron microscopy. Microsc Microanal 14, 215CrossRefGoogle ScholarPubMed
Tiemeijer, P.C. (1999). Measurement of Coulomb interactions in an electron beam monochromator. Ultramicroscopy 78, 5362.CrossRefGoogle Scholar
Van Aert, S., Van Dyck, D. & den Dekker, A.J. (2006). Resolution of coherent and incoherent imaging systems reconsidered—Classical criteria and a statistical alternative. Optics Expr 14, 38303839.CrossRefGoogle Scholar
van Benthem, K., Lupini, A.R., Oxley, M.P., Findlay, S.D., Allen, L.J. & Pennycook, S.J. (2006). Three-dimensional ADF imaging of individual atoms by through-focal series scanning transmission electron microscopy. Ultramicroscopy 106, 1092.CrossRefGoogle ScholarPubMed
Westmacott, K.H., Hinderberger, S., Radetic, S.T. & Dahmen, U. (1999). PVD growth of fcc metal films on single crystal Si and Ge substrates. Mat Res Soc Symp Proc 562, 93102.CrossRefGoogle Scholar