Hostname: page-component-7479d7b7d-qlrfm Total loading time: 0 Render date: 2024-07-09T15:20:53.199Z Has data issue: false hasContentIssue false

Direct observation of reversible oxygen migration and phase transitions in ferroelectric Hf0.5Zr0.5O2 thin-film devices

Published online by Cambridge University Press:  30 July 2021

Pavan Nukala
Affiliation:
IISc, United States
Majid Ahmadi
Affiliation:
Zernike Institute for Advanced Materials, University of Groningen, United States
Sytze de Graaf
Affiliation:
Zernike Institute for Advanced Materials, University of Groningen, United States
Bart J. Kooi
Affiliation:
Zernike Institute for Advanced Materials, University of Groningen, United States
Beatriz Noheda
Affiliation:
University of Groningen, Netherlands
Henny Zandbergen
Affiliation:
Kavli Institute of Nanoscience, Faculty of Applied Sciences, Delft University of Technology, Delft, Netherlands
Yingfen Wei
Affiliation:
EPFL, Switzerland, Groningen, United States

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Investigating Phase Transitions in Functional Materials and Devices by In Situ/Operando TEM
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of the Microscopy Society of America

References

Böscke, T. S., Müller, J., Bräuhaus, D., Schröder, U., Böttger, U., Ferroelectricity in hafnium oxide thin films. Appl. Phys. Lett. (2011), doi:10.1063/1.3634052.CrossRefGoogle Scholar
Schröder, U., Hwang, C. S., Funakubo, H., Eds., Ferroelectricity in doped hafnium oxide (Woodhead Publishing 2019, ed. 1st).Google Scholar
Nukala, P., Wei, Y., de Haas, V., Antoja-Lleonart, J., Guo, Q., Noheda, B., Guidelines for the stabilization of a polar rhombohedral phase in epitaxial Hf0.5Zr0.5O2 thin films. arXiv:2005.01809 (2020).CrossRefGoogle Scholar
Wei, Y., Nukala, P., Salverda, M., Matzen, S., Zhao, H. J., Momand, J., Everhardt, A. S., Agnus, G., Blake, G. R., Lecoeur, P., Kooi, B. J., Íñiguez, J., Dkhil, B., Noheda, B., A rhombohedral ferroelectric phase in epitaxially strained Hf 0.5 Zr 0.5 O 2 thin films. Nat. Mater. (2018), doi:10.1038/s41563-018-0196-0.Google Scholar
Li, C., Yao, Y., Shen, X., Wang, Y., Li, J., Gu, C., Yu, R., Liu, Q., Liu, M., Dynamic observation of oxygen vacancies in hafnia layer by in situ transmission electron microscopy. Nano Res. (2015), doi:10.1007/s12274-015-0857-0.CrossRefGoogle Scholar
Sharath, S. U., Vogel, S., Molina-Luna, L., Hildebrandt, E., Wenger, C., Kurian, J., Duerrschnabel, M., Niermann, T., Niu, G., Calka, P., Lehmann, M., Kleebe, H. J., Schroeder, T., Alff, L., Control of Switching Modes and Conductance Quantization in Oxygen Engineered HfOx based Memristive Devices. Adv. Funct. Mater. (2017), doi:10.1002/adfm.201700432.Google Scholar
Mikheev, V., Chouprik, A., Lebedinskii, Y., Zarubin, S., Matveyev, Y., Kondratyuk, E., Kozodaev, M. G., Markeev, A. M., Zenkevich, A., Negrov, D., Ferroelectric Second-Order Memristor. ACS Appl. Mater. Interfaces (2019), doi:10.1021/acsami.9b08189.Google ScholarPubMed
Glinchuk, M. D., Morozovska, A. N., Lukowiak, A., Stręk, W., Silibin, M. V., Karpinsky, D. V., Kim, Y., Kalinin, S. V., Possible electrochemical origin of ferroelectricity in HfO2 thin films. J. Alloys Compd. (2020), doi:10.1016/j.jallcom.2019.153628.CrossRefGoogle Scholar