Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-20T08:34:54.015Z Has data issue: false hasContentIssue false

Electron Holographic Visualization of Collective Motion of Electrons Through Electric Field Variation

Published online by Cambridge University Press:  12 May 2014

Daisuke Shindo*
Affiliation:
Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198, Japan
Shinji Aizawa
Affiliation:
RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198, Japan
Zentaro Akase
Affiliation:
Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198, Japan
Toshiaki Tanigaki
Affiliation:
RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198, Japan
Yasukazu Murakami
Affiliation:
Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198, Japan
Hyun Soon Park
Affiliation:
Department of Materials Science & Engineering, Dong-A University, Busan 604-714, Korea
*
*Corresponding author. shindo@tagen.tohoku.ac.jp
Get access

Abstract

This study demonstrates the accumulation of electron-induced secondary electrons by utilizing a simple geometrical configuration of two branches of a charged insulating biomaterial. The collective motion of these secondary electrons between the branches has been visualized by analyzing the reconstructed amplitude images obtained using in situ electron holography. In order to understand the collective motion of secondary electrons, the trajectories of these electrons around the branches have also been simulated by taking into account the electric field around the charged branches on the basis of Maxwell’s equations.

Type
FEMMS Special Issue
Copyright
© Microscopy Society of America 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Inoue, M., Suzuki, S., Akase, Z. & Shindo, D. (2012). Computer simulation of electric field variations due to movements of electric charges. J Electron Microsc 61, 217222.CrossRefGoogle ScholarPubMed
Kim, J.J., Shindo, D., Murakami, Y., Xia, W., Chou, L.J. & Chueh, Y.L. (2007). Direct observation of field emission in a single TaSi2 nanowire. Nano Lett 7, 22432247.CrossRefGoogle Scholar
Kim, K.H., Akase, Z., Shindo, D., Ohno, N., Fujii, Y., Terada, N. & Ohno, S. (2013). Electron holography study of the charging effect in microfibrils of sciatic nerve tissues. Microsc Microanal 19(S5), 5457.Google Scholar
Lichte, H. & Lehmann, M. (2008). Electron holography—basics and applications. Rep Prog Phys 71, 146.CrossRefGoogle Scholar
Matteucci, G., Missiroli, G.F., Nichelatti, E., Migliori, A., Vanzi, M. & Pozzi, G. (1991). Electron holography of long-range electric and magnetic fields. J Appl Phys 69, 18351842.Google Scholar
McCartney, M. & Smith, D.J. (2007). Electron holography: Phase imaging with nanometer resolution. Ann Rev Mater Res 37, 729767.CrossRefGoogle Scholar
Ohno, S., Hora, K., Furukawa, T. & Oguchi, H. (1992). Ultrastructural-study of the glomerular slit diaphragm in fresh unfixed kidneys by a quick-freezing method. Virchows Arch B Cell Pathol Incl Mol Pathol 61(5), 351358.CrossRefGoogle ScholarPubMed
Shindo, D. & Hiraga, K. (1998). High-Resolution Electron Microscopy for Materials Science, Tokyo: Springer-Verlag.CrossRefGoogle Scholar
Shindo, D., Kim, J.J., Kim, K.H., Xia, W., Ohno, N., Fujii, Y., Terada, N. & Ohno, S. (2009). Determination of orbital location of electron-induced secondary electrons by electric field visualization. J Phys Soc Jpn 78, 104802/18.CrossRefGoogle Scholar
Shindo, D., Kim, J.J., Xia, W., Kim, K.H., Ohno, N., Fujii, Y., Terada, N. & Ohno, S. (2007). Electron holography on dynamic motion of secondary electrons around sciatic nerve tissues. J Electron Microsc 56, 15.Google Scholar
Shindo, D. & Murakami, Y. (2008). Electron holography of magnetic materials. J Phys D Appl Phys 41, 183002/1−21.CrossRefGoogle Scholar
Tonomura, A. (1999). Electron Holography, 2nd ed. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Völkl, E., Allard, L.F. & Joy, D.C. (1999). Introduction to Electron Holography, New York: Plenum Publishing.CrossRefGoogle Scholar

Shindo Supplementary Material

Video 1

Download Shindo Supplementary Material(Video)
Video 17.9 MB

Shindo Supplementary Material

Video 2

Download Shindo Supplementary Material(Video)
Video 30.9 MB