Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-06-09T04:53:01.804Z Has data issue: false hasContentIssue false

Electron Holography with a Cs-Corrected Transmission Electron Microscope

Published online by Cambridge University Press:  21 December 2007

Dorin Geiger
Affiliation:
Institute for Structure Physics, Triebenberg Laboratory, Technische Universität Dresden, D-01062 Dresden, Germany
Hannes Lichte
Affiliation:
Institute for Structure Physics, Triebenberg Laboratory, Technische Universität Dresden, D-01062 Dresden, Germany
Martin Linck
Affiliation:
Institute for Structure Physics, Triebenberg Laboratory, Technische Universität Dresden, D-01062 Dresden, Germany
Michael Lehmann
Affiliation:
Institute for Optics and Atomic Physics, Technische Universität Berlin, D-10623 Berlin, Germany
Get access

Abstract

Cs correctors have revolutionized transmission electron microscopy (TEM) in that they substantially improve point resolution and information limit. The object information is found sharply localized within 0.1 nm, and the intensity image can therefore be interpreted reliably on an atomic scale. However, for a conventional intensity image, the object exit wave can still not be detected completely in that the phase, and hence indispensable object information is missing. Therefore, for example, atomic electric-field distributions or magnetic domain structures cannot be accessed. Off-axis electron holography offers unique possibilities to recover completely the aberration-corrected object wave with uncorrected microscopes and hence we would not need a Cs-corrected microscope for improved lateral resolution. However, the performance of holography is affected by aberrations of the recording TEM in that the signal/noise properties (“phase detection limit”) of the reconstructed wave are degraded. Therefore, we have realized off-axis electron holography with a Cs-corrected TEM. The phase detection limit improves by a factor of four. A further advantage is the possibility of fine-tuning the residual aberrations by a posteriori correction. Therefore, a combination of both methods, that is, Cs correction and off-axis electron holography, opens new perspectives for complete TEM analysis on an atomic scale.

Type
Research Article
Copyright
© 2008 Microscopy Society of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Born, M. & Wolf, E. (Reprinted 1993). Principles of Optics. New York: Pergamon Press.
Geiger, D. (2001). Off-axis Elektronenholographie zur atomaren Abbildung leichter Elemente am Beispiel des Sauerstoffs im Hoch-Tc-Supraleiter YBa2Cu3O7-x. Ph.D. thesis. Tübingen: Tübingen University.
Haider, M., Braunshausen, G. & Schwan, E. (1995). Correction of the spherical aberration of a hexapole-corrector. Optik 99, 167179.Google Scholar
Haider, M., Uhlemann, S., Schwan, E., Rose, H., Kabius, B. & Urban, K. (1998). Electron microscopy image enhanced. Nature 392, 768.Google Scholar
Ishizuka, K. (1980). Contrast transfer of crystal images in TEM. Ultramicroscopy 5, 5565.Google Scholar
Jia, C.L., Lentzen, M. & Urban, K. (2003). Atomic-resolution imaging of oxygen in perovskite ceramics. Science 299, 870872.Google Scholar
Lehmann, M. (2004a). Influence of the elliptical illumination on acquisition and correction of coherent aberrations in high-resolution electron holography. Ultramicroscopy 100, 923.Google Scholar
Lehmann, M. (2004b). Quantitative Electron Holography with Atomic Resolution. Thesis. Dresden: Technischen Universität Dresden.
Lehmann, M. & Lichte, H. (2005). Electron holographic material analysis at atomic dimensions. Cryst Res Technol 40, 149160.Google Scholar
Lentzen, M., Jahnen, B., Jia, C.L., Thust, A., Tillmann, K. & Urban, K. (2002). High-resolution imaging with an aberration-corrected transmission electron microscope. Ultramicroscopy 92, 233242.Google Scholar
Lichte, H. (1986). Electron holography approaching atomic resolution. Ultramicroscopy 20, 293304.Google Scholar
Lichte, H. (1991). Optimum focus for taking electron holograms. Ultramicroscopy 38, 1322.Google Scholar
Lichte, H. (1993). Parameters for high-resolution electron holography. Ultramicroscopy 51, 1520.Google Scholar
Lichte, H. (1996). Electron holography: Optimum position of the biprism in the electron microscope. Ultramicroscopy 64, 7986.Google Scholar
Lichte, H., Geiger, D., Harscher, A., Heindl, E., Lehmann, M., Malamidis, D., Orchowski, A. & Rau, W.-D. (1996). Artefacts in electron holography. Ultramicroscopy 64, 6777.Google Scholar
Lichte, H., Herrmann, K.-H. & Lenz, F. (1987). Electron noise in off-axis image plane holography. Optik 77, 135140.Google Scholar
Lichte, H., Schulze, D. & Lehmann, M. (2000). Das Triebenberg-Laboratorium für Höchstauflösungselektronenmikroskopie und elektronenoptische Holographie an der Technischen Universität Dresden. Wissenschaftliche Zeitschrift der Technischen Universität Dresden 49, 6265.Google Scholar
Meyer, R.R., Kirkland, A.I., Dunin-Borkowski, R.E. & Hutchison, J.L. (2000). Experimental characterization of CCD cameras for HREM at 300 kV. Ultramicroscopy 85, 913.Google Scholar
Möllenstedt, G. & Düker, H. (1956). Beobachtungen und Messungen an Biprisma-Interferenzen mit Elektronenwellen. Zeitschrift für Physik 145, 377397.Google Scholar
Rau, W.D., Lichte, H., Völkl, E. & Weierstall, U. (1991). Real-time reconstruction of electron-off-axis holograms recorded with a high pixel CCD camera. J Comput Assist Microsc 3, 5163.Google Scholar
Rose, H. (1990). Outline of a spherically corrected semiaplanatic medium-voltage transmission electron microscope. Optik 85, 1924.Google Scholar
Scherzer, O. (1949). The theoretical resolution limit of the electron microscope. J Appl Phys 20, 2029.Google Scholar
Uhlemann, S. & Haider, M. (1998). Residual wave aberrations in the first spherical aberration corrected transmission electron microscope. Ultramicroscopy 72, 109119.Google Scholar
Van Dyck, D., Lichte, H. & Spence, J.C.H. (2000). Inelastic scattering and holography. Ultramicroscopy 81, 187194.Google Scholar
Wolf, D. (2004). Analyse der im holographischen Seitenband und Zentralband gefundenen Objektinformation. Diploma thesis. Technischen Universität Dresden.