Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-06-10T18:36:19.339Z Has data issue: false hasContentIssue false

Electron Tomography of HEK293T Cells Using Scanning Electron Microscope–Based Scanning Transmission Electron Microscopy

Published online by Cambridge University Press:  02 October 2012

Yun-Wen You
Affiliation:
Research Center for Applied Sciences, Academia Sinica, Taipei 115, Taiwan
Hsun-Yun Chang
Affiliation:
Research Center for Applied Sciences, Academia Sinica, Taipei 115, Taiwan
Hua-Yang Liao
Affiliation:
Research Center for Applied Sciences, Academia Sinica, Taipei 115, Taiwan
Wei-Lun Kao
Affiliation:
Department of Materials Science and Engineering, National Taiwan University, Taipei 106, Taiwan
Guo-Ji Yen
Affiliation:
Department of Materials Science and Engineering, National Taiwan University, Taipei 106, Taiwan
Chi-Jen Chang
Affiliation:
Department of Materials Science and Engineering, National Taiwan University, Taipei 106, Taiwan
Meng-Hung Tsai
Affiliation:
Department of Materials Science and Engineering, National Taiwan University, Taipei 106, Taiwan
Jing-Jong Shyue*
Affiliation:
Research Center for Applied Sciences, Academia Sinica, Taipei 115, Taiwan Department of Materials Science and Engineering, National Taiwan University, Taipei 106, Taiwan
*
*Corresponding author. E-mail: shyue@gate.sinica.edu.tw
Get access

Abstract

Based on a scanning electron microscope operated at 30 kV with a homemade specimen holder and a multiangle solid-state detector behind the sample, low-kV scanning transmission electron microscopy (STEM) is presented with subsequent electron tomography for three-dimensional (3D) volume structure. Because of the low acceleration voltage, the stronger electron-atom scattering leads to a stronger contrast in the resulting image than standard TEM, especially for light elements. Furthermore, the low-kV STEM yields less radiation damage to the specimen, hence the structure can be preserved. In this work, two-dimensional STEM images of a 1-μm-thick cell section with projection angles between ±50° were collected, and the 3D volume structure was reconstructed using the simultaneous iterative reconstructive technique algorithm with the TomoJ plugin for ImageJ, which are both public domain software. Furthermore, the cross-sectional structure was obtained with the Volume Viewer plugin in ImageJ. Although the tilting angle is constrained and limits the resulting structural resolution, slicing the reconstructed volume generated the depth profile of the thick specimen with sufficient resolution to examine cellular uptake of Au nanoparticles, and the final position of these nanoparticles inside the cell was imaged.

Type
Techniques and Equipment Development
Copyright
Copyright © Microscopy Society of America 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bacaner, M., Broadhur, J., Hutchins, T. & Lilley, J. (1973). Scanning-transmission electron-microscope studies of deep frozen unfixed muscle correlated with spatial localization of intracellular elements by fluorescent X-ray analysis. Proc Natl Acad Sci USA 70, 34233427.CrossRefGoogle ScholarPubMed
Baumeister, W., Lucic, V., Kossel, A.H., Yang, T., Bonhoeffer, T. & Sartori, A. (2007). Multiscale imaging of neurons grown in culture: From light microscopy to cryo-electron tomography. J Struct Biol 160, 146156.Google Scholar
Bender, H., Richard, O., Kalio, A. & Sourty, E. (2007). 3D-analysis of semiconductor structures by electron tomography. Microelec Eng 84, 27072713.CrossRefGoogle Scholar
Boxer, S.G., Kraft, M.L., Weber, P.K., Longo, M.L. & Hutcheon, I.D. (2006). Phase separation of lipid membranes analyzed with high-resolution secondary ion mass spectrometry. Science 313, 19481951.Google Scholar
Connor, E.E., Mwamuka, J., Gole, A., Murphy, C.J. & Wyatt, M.D. (2005). Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small 1, 325327.Google Scholar
Denk, W. & Horstmann, H. (2004). Serial block-face scanning electron microscopy to reconstruct three-dimensional tissue nanostructure. Plos Biol 2, 19001909.Google Scholar
Fletcher, J.S., Lockyer, N.P., Vaidyanathan, S. & Vickerman, J.C. (2007). TOF-SIMS 3D biomolecular imaging of Xenopus laevis oocytes using buckminsterfullerene (C-60) primary ions. Anal Chem 79, 21992206.Google Scholar
Frangakis, A.S., Al-Amoudi, A., Diez, D.C. & Betts, M.J. (2007). The molecular architecture of cadherins in native epidermal desmosomes. Nature 450, 832U838.Google Scholar
Heymann, J.A.W., Hayles, M., Gestmann, I., Giannuzzi, L.A., Lich, B. & Subramaniam, S. (2006). Site-specific 3D imaging of cells and tissues with a dual beam microscope. J Struct Biol 155, 6373.Google Scholar
Heymann, J.A.W., Shi, D., Kim, S., Bliss, D., Milne, J.L.S. & Subramaniam, S. (2009). 3D Imaging of mammalian cells with ion-abrasion scanning electron microscopy. J Struct Biol 166, 17.Google Scholar
Hohn, K., Sailer, M., Wang, L., Lorenz, M., Schneider, M.E. & Walther, P. (2011). Preparation of cryofixed cells for improved 3D ultrastructure with scanning transmission electron tomography. Histochem Cell Biol 135, 19.Google Scholar
Hook, F., Gunnarsson, A., Kollmer, F., Sohn, S. & Sjovall, P. (2010). Spatial-resolution limits in mass spectrometry imaging of supported lipid bilayers and individual lipid vesicles. Anal Chem 82, 24262433.Google Scholar
Huff, T.B., Tong, L., Zhao, Y., Hansen, M.N., Cheng, J.X. & Wei, A. (2007). Hyperthermic effects of gold nanorods on tumor cells. Nanomedicine 2, 125132.Google Scholar
Jurrus, E., Hardy, M., Tasdizen, T., Fletcher, P.T., Koshevoy, P., Chien, C.B., Denk, W. & Whitaker, R. (2009). Axon tracking in serial block-face scanning electron microscopy. Med Image Anal 13, 180188.CrossRefGoogle ScholarPubMed
Kim, H.S., Hwang, S.O., Myung, Y., Park, J., Bae, S.Y. & Ahn, J.P. (2008). Three-dimensional structure of helical and zigzagged nanowires using electron tomography. Nano Lett 8, 551557.CrossRefGoogle ScholarPubMed
Knott, G., Marchman, H., Wall, D. & Lich, B. (2008a). Serial section scanning electron microscopy of adult brain tissue using focused ion beam milling. J Neurosci 28, 29592964.Google Scholar
Knott, G., Marchman, H., Wall, D. & Lich, B. (2008b). Serial section scanning electron microscopy of adult brain tissue using focused ion beam milling. J Neurosci 28, 29592964.Google Scholar
Koster, A.J., Ziese, U., Verkleij, A.J., Janssen, A.H. & de Jong, K.P. (2000). Three-dimensional transmission electron microscopy: A novel imaging and characterization technique with nanometer scale resolution for materials science. J Phys Chem B 104, 93689370.Google Scholar
Kubozoe, M., Okamura, S. & Akahori, H. (1979). Experiment with the spot scan TEM technique. J Elec Microsc 28, 263274.Google Scholar
Lin, Y.-C., Yu, B.-Y., Lin, W.-C., Lee, S.-H., Kuo, C.-H. & Shyue, J.-J. (2009). Tailoring the surface potential of gold nanoparticles with self-assembled monolayers with mixed functional groups. J Colloid Interf Sci 340, 126130.Google Scholar
Marco, S., Messaoudil, C., Boudier, T. & Sorzano, C.O.S. (2007). TomoJ: Tomography software for three-dimensional reconstruction in transmission electron microscopy. BMC Bioinformatics 8, 288.Google Scholar
Marko, M., Hsieh, C., Schalek, R., Frank, J. & Mannella, C. (2007). Focused-ion-beam thinning of frozen-hydrated biological specimens for cryo-electron microscopy. Nat Methods 4, 215217.CrossRefGoogle ScholarPubMed
McEwen, B.F. & Marko, M. (1998). Chapter 5 three-dimensional transmission electron microscopy and its application to mitosis research. Methods Cell Biol 61, 81111.Google Scholar
McEwen, B.F. & Marko, M. (2001). The emergence of electron tomography as an important tool for investigating cellular ultrastructure. J Histochem Cytochem 49, 553564.Google Scholar
Nygren, H., Hagenhoff, B., Malmberg, P., Nilsson, M. & Richter, K. (2007). Bioimaging TOF-SIMS: High resolution 3D Imaging of single cells. Microsc Res Techniq 70, 969974.Google Scholar
Patra, H.K., Banerjee, S., Chaudhuri, U., Lahiri, P. & Dasgupta, A.K. (2007). Cell selective response to gold nanoparticles. Nanomed Nanotechnol Biol Med 3, 111119.Google Scholar
Sen, A., Baxa, U., Simon, M.N., Wall, J.S., Sabate, R., Saupe, S.J. & Steven, A.C. (2007). Mass analysis by scanning transmission electron microscopy and electron diffraction validate predictions of stacked beta-solenoid model of HET-s prion fibrils. J Biol Chem 282, 55455550.CrossRefGoogle ScholarPubMed
Sostarecz, A.G., Sun, S., Szakal, C., Wucher, A. & Winograd, N. (2004). Depth profiling studies of multilayer films with a C-60(+) ion source. Appl Surf Sci 231–232, 179182.Google Scholar
Suenaga, K. & Koshino, M. (2010). Atom-by-atom spectroscopy at graphene edge. Nature 468, 10881090.Google Scholar
Touboul, D., Benabdellah, F., Seyer, A., Quinton, L., Brunelle, A. & Laprevote, O. (2010). Mass spectrometry imaging of rat brain sections: Nanomolar sensitivity with MALDI versus nanometer resolution by TOF-SIMS. Anal Bioanal Chem 396, 151162.Google Scholar
Verheijen, M.A., Algra, R.E., Borgstrom, M.T., Immink, G., Sourty, E., van Enckevort, W.J.P., Vlieg, E. & Bakkers, E.P.A.M. (2007). Three-dimensional morphology of GaP-GaAs nanowires revealed by transmission electron microscopy tomography. Nano Lett 7, 30513055.Google Scholar
Walther, P., Sailer, M., Hohn, K., Luck, S., Schmidt, V. & Beil, M. (2010). Novel electron tomographic methods to study the morphology of keratin filament networks. Microsc Microanal 16, 462471.Google Scholar
Weibel, D., Wong, S., Lockyer, N., Blenkinsopp, P., Hill, R. & Vickerman, J.C. (2003). A C-60 primary ion beam system for time of flight secondary ion mass spectrometry: Its development and secondary ion yield characteristics. Anal Chem 75, 17541764.CrossRefGoogle Scholar
Winograd, N., Wucher, A. & Cheng, J. (2007). Protocols for three-dimensional molecular imaging using mass spectrometry. Anal Chem 79, 55295539.Google Scholar
Xin, H.L. & Muller, D.A. (2009). Aberration-corrected ADF-STEM depth sectioning and prospects for reliable 3D imaging in S/TEM. J Elec Microsc 58, 157165.Google Scholar
Yu, B.-Y., Kuo, C.-H., Wang, W.-B., Yen, G.-J., Iida, S.-i., Chen, S.-Z., Lin, W.-C., Lee, S.-H., Kao, W.-L., Liu, C.-Y., Chang, H.-Y., You, Y.-W., Chang, C.-J., Liu, C.-P., Jou, J.-H. & Shyue, J.-J. (2011). ToF-SIMS imaging of the nanoscale phase separation in polymeric light emitting diodes: Effect of nanostructure on device efficiency. Analyst 136, 716723.CrossRefGoogle ScholarPubMed
Yu, B.Y., Lin, W.C., Huang, J.H., Chu, C.W., Lin, Y.C., Kuo, C.H., Lee, S.H., Wong, K.T., Ho, K.C. & Shyue, J.J. (2009). Three-dimensional nanoscale imaging of polymer bulk-heterojunction by scanning electrical potential microscopy and C-60(+) cluster ion slicing. Anal Chem 81, 89368941.CrossRefGoogle ScholarPubMed
Yu, B.-Y., Lin, W.-C., Wang, W.-B., Iida, S.-i., Chen, S.-Z., Liu, C.-Y., Kuo, C.-H., Lee, S.-H., Kao, W.-L., Yen, G.-J., You, Y.-W., Liu, C.-P., Jou, J.-H. & Shyue, J.-J. (2010a). Effect of fabrication parameters on three-dimensional nanostructures of bulk heterojunctions imaged by high-resolution scanning ToF-SIMS. ACS Nano 4, 833840.Google Scholar
Yu, B.Y., Lin, W.C., Wang, W.B., Iida, S., Chen, S.Z., Liu, C.Y., Kuo, C.H., Lee, S.H., Kao, W.L., Yen, G.J., You, Y.W., Liu, C.P., Jou, J.H. & Shyue, J.J. (2010b). Effect of fabrication parameters on three-dimensional nanostructures of bulk heterojunctions imaged by high-resolution scanning ToF-SIMS. ACS Nano 4, 833840.Google Scholar
Yu, B.Y., Liu, C.Y., Lin, W.C., Wang, W.B., Lai, I.M., Chen, S.Z., Lee, S.H., Kuo, C.H., Kao, W.L., You, Y.W., Liu, C.P., Chang, H.Y., Jou, J.H. & Shyue, J.J. (2010c). Effect of fabrication parameters on three-dimensional nanostructures and device efficiency of polymer light-emitting diodes. ACS Nano 4, 25472554.CrossRefGoogle ScholarPubMed