Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-19T11:00:22.417Z Has data issue: false hasContentIssue false

High-Efficiency Three-Dimensional Visualization of Complex Microstructures via Multidimensional STEM Acquisition and Reconstruction

Published online by Cambridge University Press:  16 March 2020

Kevin G. Field*
Affiliation:
Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI48109, USA
Benjamin P. Eftink
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM87544, USA
Chad M. Parish
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, TN37831, USA
Stuart A. Maloy
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM87544, USA
*
*Author for correspondence: Kevin G. Field, E-mail: kgfield@umich.edu
Get access

Abstract

Complex material systems in which microstructure and microchemistry are nonuniformly dispersed require three-dimensional (3D) rendering(s) to provide an accurate determination of the physio-chemical nature of the system. Current scanning transmission electron microscope (STEM)-based tomography techniques enable 3D visualization but can be time-consuming, so only select systems or regions are analyzed in this manner. Here, it is presented that through high-efficiency multidimensional STEM acquisition and reconstruction, complex point cloud-like microstructural features can quickly and effectively be reconstructed in 3D. The proposed set of techniques is demonstrated, analyzed, and verified for a high-chromium steel with heterogeneously situated features induced using high-energy neutron bombardment.

Type
Software and Instrumentation
Copyright
Copyright © Microscopy Society of America 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderoglu, O, Byun, TS, Toloczko, M & Maloy, SA (2013). Mechanical performance of ferritic martensitic steels for high dose applications in advanced nuclear reactors. Metall Mater Trans A 44, 7083.CrossRefGoogle Scholar
Anderoglu, O, Van den Bosch, J, Hosemann, P, Stergar, E, Sencer, BH, Bhattacharyya, D, Dickerson, R, Dickerson, P, Hartl, M & Maloy, SA (2012). Phase stability of an HT-9 duct irradiated in FFTF. J Nucl Mater 430, 194204.CrossRefGoogle Scholar
Bladt, E, Pelt, DM, Bals, S & Joost Batenburg, K (2015). Electron tomography based on highly limited data using a neural network reconstruction technique. Ultramicroscopy 158, 8188.CrossRefGoogle ScholarPubMed
Blavette, D, Cadel, E, Fraczkiewicz, A & Menand, A (1999). Three-dimensional atomic-scale imaging of impurity segregation to line defects. Science 286, 23172319.CrossRefGoogle ScholarPubMed
Bonny, G, Terentyev, D & Malerba, L (2008). On the α–α′ miscibility gap of Fe–Cr alloys. Scr Mater 59, 11931196.CrossRefGoogle Scholar
Cerezo, A, Clifton, PH, Galtrey, MJ, Humphreys, CJ, Kelly, TF, Larson, DJ, Lozano-Perez, S, Marquis, EA, Oliver, RA, Sha, G, Thompson, K, Zandbergen, M & Alvis, RL (2007). Atom probe tomography today. Mater Today 10, 3642.CrossRefGoogle Scholar
Dustin, I, Furrer, P, Stasiak, A, Dubochet, J, Langowski, J & Egelman, E (1991). Spatial visualization of DNA in solution. J Struct Biol 107, 1521.CrossRefGoogle ScholarPubMed
Eftink, BP, Gray, GT & Maloy, SA (2017). Stereographic methods for 3D characterization of dislocations. Microsc Microanal 23, 210211.CrossRefGoogle Scholar
Eftink, BP & Maloy, SA (2017) obtain3D. https://www.osti.gov/servlets/purl/1371737.Google Scholar
Egerton, RF & Cheng, SC (1987). Measurement of local thickness by electron energy-loss spectroscopy. Ultramicroscopy 21, 231244.CrossRefGoogle Scholar
Gault, B, Moody, MP, Cairney, JM & Ringer, SP (2012) Atom Probe Microscopy. New York: Springer.CrossRefGoogle Scholar
Guo, W, Sneed, BT, Zhou, L, Tang, W, Kramer, MJ, Cullen, DA & Poplawsky, JD (2016). Correlative energy-dispersive X-ray spectroscopic tomography and atom probe tomography of the phase separation in an alnico 8 alloy. Microsc Microanal 22, 12511260.CrossRefGoogle Scholar
Hasanzadeh, S, Schäublin, R, Décamps, B, Rousson, V, Autissier, E, Barthe, MF & Hébert, C (2018). Three-dimensional scanning transmission electron microscopy of dislocation loops in tungsten. Micron 113, 2433. https://doi.org/10.1016/j.micron.2018.05.010.CrossRefGoogle ScholarPubMed
Hu, X, Parish, CM, Wang, K, Koyanagi, T, Eftink, BP & Katoh, Y (2019). Transmutation-induced precipitation in tungsten irradiated with a mixed energy neutron spectrum. Acta Mater 165, 5161.CrossRefGoogle Scholar
Hyde, JM, Burke, MG, Smith, GDW, Styman, P, Swan, H & Wilford, K (2014). Uncertainties and assumptions associated with APT and SANS characterisation of irradiation damage in RPV steels. J Nucl Mater 449, 308314.CrossRefGoogle Scholar
Iakoubovskii, K, Mitsuishi, K, Nakayama, Y & Furuya, K (2008). Thickness measurements with electron energy loss spectroscopy. Microsc Res Techniq 71, 626631.CrossRefGoogle ScholarPubMed
Jenkins, ML & Kirk, MA (2000). Characterization of Radiation Damage by Transmission Electron Microscopy. Boca Rotan, FL: Taylor & Francis.CrossRefGoogle Scholar
Keenan, MR & Kotula, PG (2004 a). Accounting for Poisson noise in the multivariate analysis of ToF-SIMS spectrum images. Surf Interface Anal 36, 203212. http://doi.wiley.com/10.1002/sia.1657.CrossRefGoogle Scholar
Keenan, MR & Kotula, PG (2004 b). Optimal scaling of TOF-SIMS spectrum-images prior to multivariate statistical analysis. Appl Surf Sci 231, 240244.CrossRefGoogle Scholar
Klueh, RL & Harries, DR (2001). High-Chromium Ferritic and Martensitic Steels for Nuclear Applications. West Conshohocken, PA: ASTM.CrossRefGoogle Scholar
Kotula, PG, Keenan, MR & Michael, JR (2003). Automated analysis of SEM X-ray spectral images: A powerful new microanalysis tool. Microsc Microanal 9, 117.CrossRefGoogle ScholarPubMed
Kübel, C, Voigt, A, Schoenmakers, R, Otten, M, Su, D, Lee, T-C, Carlsson, A & Bradley, J (2005). Recent advances in electron tomography: TEM and HAADF-STEM tomography for materials science and semiconductor applications. Microsc Microanal 11, 378400.CrossRefGoogle ScholarPubMed
Leary, R, Saghi, Z, Midgley, PA & Holland, DJ (2013). Compressed sensing electron tomography. Ultramicroscopy 131, 7091.CrossRefGoogle ScholarPubMed
Li, W, Field, KG & Morgan, D (2018). Automated defect analysis in electron microscopic images. npj Comput Mate 4, 36. https://doi.org/10.1038/s41524-018-0093-8.CrossRefGoogle Scholar
Malis, T, Cheng, SC & Egerton, RF (1988). EELS log-ratio technique for specimen-thickness measurement in the TEM. J Electron Microsc Tech 8, 193200. http://doi.wiley.com/10.1002/jemt.1060080206.CrossRefGoogle ScholarPubMed
Marquis, EA & Hyde, JM (2010). Applications of atom-probe tomography to the characterisation of solute behaviours. Mater Sci Eng R Rep 69, 3762.CrossRefGoogle Scholar
Midgley, PA & Dunin-Borkowski, RE (2009). Electron tomography and holography in materials science. Nat Mater 8, 271280.CrossRefGoogle ScholarPubMed
Miller, MK & Forbes, RG (2014). Atom-Probe Tomography: The Local Electrode Atom Probe. New York, NY: Springer.CrossRefGoogle Scholar
Nankivell, J (1963). The theory of electron stereo microscopy. Optik 20, 171.Google Scholar
Oveisi, E, Letouzey, A, De Zanet, S, Lucas, G, Cantoni, M, Fua, P & Hébert, C (2018). Stereo-vision three-dimensional reconstruction of curvilinear structures imaged with a TEM. Ultramicroscopy 184, 116124.CrossRefGoogle Scholar
Parish, CM (2015). When will low-contrast features be visible in a STEM X-ray spectrum image? Microsc Microanal 21, 706724.CrossRefGoogle Scholar
Ribis, J & Lozano-Perez, S (2012). Orientation relationships and interface structure of α-Cr nanoclusters embedded in α-Fe matrix after α-α’ demixing in neutron irradiated Oxide Dispersion Strengthened material. Mater Lett 74, 143146.CrossRefGoogle Scholar
Roberts, G, Haile, SY, Sainju, R, Edwards, DJ, Hutchinson, B & Zhu, Y (2019). Deep learning for semantic segmentation of defects in advanced STEM images of steels. Sci Rep 9, 12744.CrossRefGoogle ScholarPubMed
Saghi, Z, Holland, DJ, Leary, R, Falqui, A, Bertoni, G, Sederman, AJ, Gladden, LF & Midgley, PA (2011). Three-dimensional morphology of iron oxide nanoparticles with reactive concave surfaces. A compressed sensing-electron tomography (CS-ET) approach. Nano Lett 11, 46664673.CrossRefGoogle ScholarPubMed
Schwartz, AJ, Wall, MA, Zocco, TG & Wolfer, WG (2005). Characterization and modelling of helium bubbles in self-irradiated plutonium alloys. Philos Mag 85, 479488.CrossRefGoogle Scholar
Sencer, BH, Kennedy, JR, Cole, JI, Maloy, SA & Garner, FA (2009). Microstructural analysis of an HT9 fuel assembly duct irradiated in FFTF to 155dpa at 443°C. J Nucl Mater 393, 235241.CrossRefGoogle Scholar
Van Benthem, MH & Keenan, MR (2004). Fast algorithm for the solution of large-scale non-negativity-constrained least squares problems. J Chemom 18, 441450.CrossRefGoogle Scholar
Van Benthem, MH, Keenan, MR & Haaland, DM (2002). Application of equality constraints on variables during alternating least squares procedures. J Chemom 16, 613622.CrossRefGoogle Scholar
Williams, DB & Carter, CB (1996). Transmission Electron Microscopy. New York, NY: Plenum Press.CrossRefGoogle Scholar
Yu, H, Yi, X & Hofmann, F (2018). 3D reconstruction of the spatial distribution of dislocation loops using an automated stereo-imaging approach. Ultramicroscopy 195, 5868.CrossRefGoogle ScholarPubMed
Zhong, Z, Goris, B, Schoenmakers, R, Bals, S & Batenburg, KJ (2017). A bimodal tomographic reconstruction technique combining EDS-STEM and HAADF-STEM. Ultramicroscopy 174, 3545.CrossRefGoogle ScholarPubMed
Supplementary material: File

Field et al. supplementary material

Field et al. supplementary material

Download Field et al. supplementary material(File)
File 3 MB