Hostname: page-component-77c89778f8-5wvtr Total loading time: 0 Render date: 2024-07-24T01:19:47.025Z Has data issue: false hasContentIssue false

Holey-Gold Films on Molybdenum Grids for Cryogenic Electron Microscopy Imaging of 2D Polymer Crystals

Published online by Cambridge University Press:  30 July 2021

Xi Jiang
Affiliation:
Materials Sciences Division, Lawrence Berkeley National Laboratory, United States
Sunting Xuan
Affiliation:
Molecular Foundry, Lawrence Berkeley National Laboratory, United States
Ronald Zuckermann
Affiliation:
Molecular Foundry, Lawrence Berkeley National Laboratory, United States
Robert Glaeser
Affiliation:
Lawrence Berkeley National Laboratory, United States
Nitash Balsara
Affiliation:
University of California, Berkeley, United States

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Many Detectors Make Lights Work: Advances in Microanalysis of Light Elements in Synthetic and Natural Materials
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of the Microscopy Society of America

References

BOOY, F.P. & PAWLEY, J.B. (1993). Cryo-Crinkling - What Happens to Carbon-Films on Copper Grids at Low-Temperature. Ultramicroscopy 48(3), 273-280.Google ScholarPubMed
Y, FUJIYOSHI. (1998). The structural study of membrane proteins by electron crystallography. Adv Biophys 35, 25-80.Google Scholar
GLAESER, R.M. (1992). Specimen Flatness of Thin Crystalline Arrays - Influence of the Substrate. Ultramicroscopy 46(1-4), 33-43.CrossRefGoogle ScholarPubMed
RUSSO, C.J. & PASSMORE, L.A. (2014). Ultrastable gold substrates for electron cryomicroscopy. Science 346(6215), 1377-1380.CrossRefGoogle ScholarPubMed
RUSSO, C.J. & PASSMORE, L.A. (2016). Ultrastable gold substrates: Properties of a support for high-resolution electron cryomicroscopy of biological specimens. Journal of structural biology 193(1), 33-44.Google ScholarPubMed
J, VONCK. (1996). A three-dimensional difference map of the N intermediate in the bacteriorhodopsin photocycle: Part of the F helix tilts in the M to N transition. Biochemistry 35(18), 5870-5878.Google Scholar
J, VONCK. (2000). Parameters affecting specimen flatness of two-dimensional crystals for electron crystallography. Ultramicroscopy 85(3), 123-129.Google Scholar
HAN, B.G., WOLF, S.G., VONCK, J. & GLAESER, R.M. (1994). Specimen Flatness of Glucose-Embedded Biological-Materials for Electron Crystallography Is Affected Significantly by the Choice of Carbon Evaporation Stock. Ultramicroscopy 55(1), 1-5.Google ScholarPubMed
HAYNES, W.M. (2015). Handbook of Chemistry and Physics. CRC Press.Google Scholar
ROBERTSON, E.J., OLIVER, G.K., QIAN, M., PROULX, C., ZUCKERMANN, R.N. & RICHMOND, G.L. (2014). Assembly and molecular order of two-dimensional peptoid nanosheets through the oil-water interface. P Natl Acad Sci USA 111(37), 13284-13289.CrossRefGoogle ScholarPubMed
X, JIANG., GREER, D.R., KUNDU, J., OPHUS, C., MINOR, A.M., PRENDERGAST, D., ZUCKERMANN, R.N., BALSARA, N.P. & DOWNING, K.H. (2018). Imaging Unstained Synthetic Polymer Crystals and Defects on Atomic Length Scales Using Cryogenic Electron Microscopy. Macromolecules 51(19), 7794-7799.Google Scholar