Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-06-10T22:01:27.371Z Has data issue: false hasContentIssue false

A Model for Characteristic X-Ray Emission in Electron Probe Microanalysis Based on the (Filtered) Spherical Harmonic ($P_{\rm N}$) Method for Electron Transport

Published online by Cambridge University Press:  11 April 2022

Jonas Bünger*
Affiliation:
Applied and Computational Mathematics, RWTH Aachen University, Schinkelstrasse 2, 52062 Aachen (North Rhine-Westphalia), Germany
Silvia Richter
Affiliation:
Gemeinschaftslabor für Elektronenmikroskopie, RWTH Aachen University, Ahornstrasse 55, 52074 Aachen (North Rhine-Westphalia), Germany
Manuel Torrilhon
Affiliation:
Applied and Computational Mathematics, RWTH Aachen University, Schinkelstrasse 2, 52062 Aachen (North Rhine-Westphalia), Germany
*
*Corresponding author: Jonas Bünger, E-mail: buenger@mathcces.rwth-aachen.de
Get access

Abstract

Classical $k$-ratio models, for example, ZAF and $\phi ( \rho z)$, used in electron probe microanalysis (EPMA) assume a homogeneous or multilayered material structure, which essentially limits the spatial resolution of EPMA to the size of the interaction volume where characteristic X-rays are produced. We present a new model for characteristic X-ray emission that avoids assumptions on the material structure to not restrict the resolution of EPMA a priori. Our model bases on the spherical harmonic ($P_{\rm N}$) approximation of the Boltzmann equation for electron transport in continuous slowing down approximation. $P_{\rm N}$ models have a simple structure, are hierarchical in accuracy and well-suited for efficient adjoint-based gradient computation, which makes our model a promising alternative to classical models in terms of improving the resolution of EPMA in the future. We present results of various test cases including a comparison of the $P_{\rm N}$ model to a minimum entropy moment model as well as Monte-Carlo (MC) trajectory sampling, a comparison of $P_{\rm N}$-based $k$-ratios to $k$-ratios obtained with MC, a comparison with experimental data of electron backscattering yields as well as a comparison of $P_{\rm N}$ and MC based on characteristic X-ray generation in a three-dimensional material probe with fine structures.

Type
Software and Instrumentation
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press on behalf of the Microscopy Society of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ammann, N & Karduck, P (1990). A further developed Monte Carlo model for the quantitative EPMA of complex samples. In Microbeam Analysis, Michael J & Ingram P (Eds.), pp. 150–154. San Francisco, USA: San Francisco Press.CrossRefGoogle Scholar
Anile, AM & Pennisi, S (1992). Thermodynamic derivation of the hydrodynamical model for charge transport in semiconductors. Phys Rev B 46, 1318613193.CrossRefGoogle ScholarPubMed
Aster, RC, Borchers, B & Thurber, CH (2013). Parameter Estimation and Inverse Problems, 2nd ed. Boston: Academic Press.Google Scholar
Atkinson, K & Han, W (2012). Spherical Harmonics and Approximations on the Unit Sphere: An Introduction, vol. 2014. Berlin, Heidelberg, Germany: Springer.CrossRefGoogle Scholar
Barkshire, IR, Karduck, P, Rehbach, W & Richter, S (2000). High-spatial resolution low-energy electron beam X-ray microanalysis. Mikrochim Acta 132, 113128.CrossRefGoogle Scholar
Bastin, GF, Dijkstra, JM & Heijligers, HJM (1998). PROZA96: An improved matrix correction program for electron probe microanalysis, based on a double Gaussian $\phi ( \rho z)$ approach. Xray Spectrom 27, 310.3.0.CO;2-L>CrossRefGoogle Scholar
Bastin, GF & Heijligers, HJM (1991). Quantitative electron probe microanalysis of ultra-light elements (boron-oxygen). In Electron Probe Quantitation, Heinrich KFJ & Newbury DE (Eds.), pp. 145–161. New York, USA: Plenum Press.CrossRefGoogle Scholar
Berger, MJ & Seltzer, SM (1964). Tables of Energy Losses and Ranges of Electrons and Positrons. NASA SP-3012, NASA Special Publication 3012.Google Scholar
Bünger, J (2021). Three-dimensional modelling of X-ray emission in electron probe microanalysis based on deterministic transport equations. Dissertation, RWTH Aachen University, Aachen, veröffentlicht auf dem Publikationsserver der RWTH Aachen University, 2021.Google Scholar
Bünger, J, Richter, S & Torrilhon, M (2018). A deterministic model of electron transport for electron probe microanalysis. IOP Conf Ser: Mater Sci Eng 304, 012004.CrossRefGoogle Scholar
Bünger, J, Sarna, N & Torrilhon, M (2022). Stable boundary conditions and discretization for PN equations. J Comput Math 40(6).Google Scholar
Canuto, C, Hussaini, M, Quarteroni, A & Zang, T (2006). Spectral Methods: Fundamentals in Single Domains, vol. 23. Berlin Heidelberg, Germany: Springer.CrossRefGoogle Scholar
Carpenter, MH, Gottlieb, D & Abarbanel, S (1994). Time-stable boundary conditions for finite-difference schemes solving hyperbolic systems: Methodology and application to high-order compact schemes. J Comput Phys 111, 220236.CrossRefGoogle Scholar
Case, K & Zweifel, P (1967). Linear Transport Theory. Addison-Wesley Series in Nuclear Engineering. Addison-Wesley Pub. Co.Google Scholar
Casnati, E, Tartari, A & Baraldi, C (1982). An empirical approach to K-shell ionisation cross section by electrons. J Phys B: Atom Mol Phys 16, 505.CrossRefGoogle Scholar
Cercignani, C (2012). The Boltzmann Equation and its Applications. Applied Mathematical Sciences. New York: Springer.Google Scholar
Chantler, CT (1995). Theoretical form factor, attenuation, and scattering tabulation for $Z = 1$–92 from $E = 1$–10 eV to $E = 0.4$–1.0 MeV. J Phys Chem Ref Data 24, 71643.CrossRefGoogle Scholar
Chantler, CT (2003). Atomic form factors and photoelectric absorption cross-sections near absorption edges in the soft X-ray region. AIP Conf Proc 652, 370377.CrossRefGoogle Scholar
Cullen, DE, Hubbell, JH & Kissel, L (1997). EPDL97 the evaluated data library, ’97 Version. Tech. rep., Lawrence Livermore National Laboratory.CrossRefGoogle Scholar
Duclous, R, Dubroca, B & Frank, M (2010). A deterministic partial differential equation model for dose calculation in electron radiotherapy. Phys Med Biol 55, 3843.CrossRefGoogle ScholarPubMed
Egger, H & Schlottbom, M (2012). A mixed variational framework for the radiative transfer equation. Math Models Methods Appl Sci 22, 1150014.CrossRefGoogle Scholar
Fathers, D & Rez, P (1979). Transport equation theory of electron backscattering. Scan Electron Microsc 2, 5566.Google Scholar
Fernández, DCDR, Hicken, JE & Zingg, DW (2014). Review of summation-by-parts operators with simultaneous approximation terms for the numerical solution of partial differential equations. Comput Fluids 95, 171196.CrossRefGoogle Scholar
Frank, M, Herty, M & Sandjo, AN (2010). Optimal radiotherapy treatment planning governed by kinetic equations. Math Models Methods Appl Sci 20, 661678.CrossRefGoogle Scholar
Garrett, CK, Hauck, C & Hill, J (2015). Optimization and large scale computation of an entropy-based moment closure. J Comput Phys 302, 573590.CrossRefGoogle Scholar
Gauvin, R, Lifshin, E, Demers, H, Horny, P & Campbell, H (2006). Win X-ray: A new Monte Carlo program that computes X-ray spectra obtained with a scanning electron microscope. Microsc Microanal 12, 4964.CrossRefGoogle ScholarPubMed
Goldstein, J, Newbury, D, Michael, J, Ritchie, N, Scott, J & Joy, D (2018). Scanning Electron Microscopy and X-Ray Microanalysis. New York, NY: Springer.CrossRefGoogle Scholar
Goudsmit, S & Saunderson, JL (1940). Multiple scattering of electrons. Phys Rev 57, 2429.CrossRefGoogle Scholar
Grad, H (1949). On the kinetic theory of rarefied gases. Commun Pure Appl Math 2, 331407.CrossRefGoogle Scholar
Hans, B (1930). Zur theorie des durchgangs schneller korpuskularstrahlen durch materie. Ann Phys 5, 325400.Google Scholar
Hauck, C (2006). Entropy-based moment closures in semiconductor models. Ph.D. Thesis. University of Maryland.Google Scholar
Heinrich, K & Newbury, DE (Eds.) (1991). Electron Probe Quantitation. Boston, MA: Springer.CrossRefGoogle Scholar
Hesthaven, J & Kirby, R (2008). Filtering in legendre spectral methods. Math Comput 77, 14251452.CrossRefGoogle Scholar
Jablonski, A, Salvat, F & Powell, C (2003). NIST Electron Elastic-Scattering Cross-Section Database–Version 3.1. National Institute of Standards and Technology.Google Scholar
Joy, DC (1991). An introduction to Monte Carlo simulations. Scanning Microsc 5, 329337.Google Scholar
Joy, DC (2008). A database on electron-solid interactions. Tech. Rep., Oak Ridge National Laboratory.Google Scholar
Kreiss, HO & Scherer, G (1974). Finite element and finite difference methods for hyperbolic partial differential equations. In Mathematical Aspects of Finite Elements in Partial Differential Equations, de Boor C (Ed.), pp. 195–212. New York, NY: Academic Press.CrossRefGoogle Scholar
Küpper, K (2016). Models, numerical methods, and uncertainty quantification for radiation therapy. Ph.D. dissertation. Aachen University.Google Scholar
Larsen, EW, Miften, MM, Fraass, BA & Bruinvis, IAD (1997). Electron dose calculations using the method of moments. Med Phys 24, 111125.CrossRefGoogle ScholarPubMed
Levermore, CD (1996). Moment closure hierarchies for kinetic theories. J Stat Phys 83, 10211065.CrossRefGoogle Scholar
Love, G, Sewell, DA & Scott, VD (1984). An improved absorption correction for quantitative analysis. J Phys Colloques 45, 2124.CrossRefGoogle Scholar
Mark, JC (1944). The spherical harmonics method, part I. Tech. Report MT 92, National Research Council of Canada.Google Scholar
Mark, JC (1945). The spherical harmonics method, part II. Tech. Report MT 97, National Research Council of Canada.Google Scholar
Marshak, RE (1947). Note on the spherical harmonic method as applied to the Milne problem for a sphere. Phys Rev 71, 443446.CrossRefGoogle Scholar
McClarren, RG & Hauck, CD (2010 a). Robust and accurate filtered spherical harmonics expansions for radiative transfer. J Comput Phys 229, 55975614.CrossRefGoogle Scholar
McClarren, RG & Hauck, CD (2010 b). Simulating radiative transfer with filtered spherical harmonics. Phys Lett A 374, 22902296.CrossRefGoogle Scholar
McDonald, J & Torrilhon, M (2013). Affordable robust moment closures for CFD based on the maximum-entropy hierarchy. J Comput Phys 251, 500523.CrossRefGoogle Scholar
Merlet, C & Llovet, X (2012). Uncertainty and capability of quantitative EPMA at low voltage: A review. IOP Conf Ser: Mater Sci Eng 32, 012016.CrossRefGoogle Scholar
Minerbo, G (1979). Maximum entropy reconstruction from cone-beam projection data. Comput Biol Med 9, 2937.CrossRefGoogle ScholarPubMed
Minerbo, GN (1978). Maximum entropy Eddington factors. J Quant Spectrosc Radiat Transfer 20, 541545.CrossRefGoogle Scholar
Müller, C (1966). Spherical Harmonics. New York: Springer-Verlag Berlin.CrossRefGoogle Scholar
Newbury, DE (2002). Barriers to quantitative electron probe X-ray microanalysis for low voltage scanning electron microscope. J Res Natl Inst Stand Technol 107, 605619.CrossRefGoogle Scholar
Olbrant, E, Hauck, CD & Frank, M (2012). A realizability-preserving discontinuous Galerkin method for the M1 model of radiative transfer. J Comput Phys 231, 56125639.CrossRefGoogle Scholar
Olsson, P (1995). Summation by parts, projections, and stability. I. Math Comput 64, 10351065.CrossRefGoogle Scholar
Packwood, RH & Brown, JD (1981). A Gaussian expression to describe $\phi ( \rho z)$ curves for quantitative electron probe microanalysis. Xray Spectrom 10, 138146.CrossRefGoogle Scholar
Philibert, J (1963). A method for calculating the absorption correction in electron probe microanalysis. In X-Ray Optics and X-Ray Microanalysis, Pattee (Ed.), pp. 379–392. New York.CrossRefGoogle Scholar
Pichard, T (2016). Mathematical modelling for dose depositon in photontherapy. Ph.D. Thesis. Université de Bordeaux.Google Scholar
Pouchou, JL & Pichoir, F (1984). A new model for quantitative X-ray microanalysis, Part I: Application to the analysis of homogeneous samples. Rech Aerosp 3, 13.Google Scholar
Pouchou, JL & Pichoir, F (1991). Quantitative analysis of homogeneous or stratified microvolumes applying the model ‘PAP’. In Electron Probe Quantitation, Heinrich KFJ & Newbury DE (Eds.), pp. 31–75. New York, NY: Plenum Press.CrossRefGoogle Scholar
Radice, D, Abdikamalov, E, Rezzolla, L & Ott, CD (2013). A new spherical harmonics scheme for multi-dimensional radiation transport I. Static matter configurations. J Comput Phys 242, 648669.CrossRefGoogle Scholar
Reimer, L (1998). Scanning Electron Microscopy, 2nd ed. Berlin: Springer.CrossRefGoogle Scholar
Richter, S & Pinard, PT (2014). Analytical challenges and strategies in FE-EPMA. Microsc Microanal 20, 680681.CrossRefGoogle Scholar
Ritchie, NWM (2005). A new Monte Carlo application for complex sample geometries. Surf Interface Anal 37, 10061011.CrossRefGoogle Scholar
Ritchie, NWM (2009). Spectrum simulation in DTSA-II. Microsc Microanal 15, 454522.CrossRefGoogle ScholarPubMed
Salvat, F (2015). PENELOPE-2014: A code system for Monte Carlo simulation of electron and photon transport. PENELOPE-2014 training course of 29 June–3 July 2015, Barcelona, Spain. OECD-NEA.Google Scholar
Salvat, F, Berger, MJ, Jablonski, A, Bronic, IK, Mitroy, J, Powell, CJ & Sanche, L (2007). Elastic scattering of electrons and positrons. ICRU Report, vol. 7, Bethesda, MD: ICRU.Google Scholar
Salvat, F, Jablonski, A & Powell, CJ (2005). elsepa—Dirac partial-wave calculation of elastic scattering of electrons and positrons by atoms, positive ions and molecules. Comput Phys Commun 165, 157190.CrossRefGoogle Scholar
Schlottbom, M & Egger, H (2015). A class of Galerkin schemes for time-dependent radiative transfer. SIAM J Numer Anal 54, 35773599.Google Scholar
Seibold, B & Frank, M (2014). StaRMAP—A second order staggered grid method for spherical harmonics moment equations of radiative transfer. ACM Trans Math Softw 41, 4:14:28.CrossRefGoogle Scholar
Strand, B (1994). Summation by parts for finite difference approximations for $d/dx$. J Comput Phys 110, 4767.CrossRefGoogle Scholar
Strang, G (1968). On the construction and comparison of difference schemes. SIAM J Numer Anal 5, 506517.CrossRefGoogle Scholar
Struchtrup, H & Torrilhon, M (2003). Regularization of Grad's 13 moment equations: Derivation and linear analysis. Phys Fluids 15, 26682680.CrossRefGoogle Scholar
Tarantola, A (2005). Inverse Problem Theory and Methods for Model Parameter Estimation. Philadelphia: Society for Industrial and Applied Mathematics.CrossRefGoogle Scholar
Torrilhon, M & Struchtrup, H (2004). Regularized 13-moment equations: Shock structure calculations and comparison to Burnett models. J Fluid Mech 513, 171198.CrossRefGoogle Scholar
Ul-Hamid, A (2018). A Beginners’ Guide to Scanning Electron Microscopy. Cham, Switzerland: Springer.CrossRefGoogle Scholar