Hostname: page-component-77c89778f8-m8s7h Total loading time: 0 Render date: 2024-07-18T03:24:25.075Z Has data issue: false hasContentIssue false

Nanolithography on Graphene by Using Scanning Tunneling Microscopy in a Methanol Environment

Published online by Cambridge University Press:  10 September 2013

Chulsu Kim
Affiliation:
Faculty of Nanotechnology and Advanced Material Engineering, GRI, & HMC, Sejong University, Seoul 143-747, SouthKorea
Joonkyu Park
Affiliation:
Faculty of Nanotechnology and Advanced Material Engineering, GRI, & HMC, Sejong University, Seoul 143-747, SouthKorea
Yongho Seo*
Affiliation:
Faculty of Nanotechnology and Advanced Material Engineering, GRI, & HMC, Sejong University, Seoul 143-747, SouthKorea
Jinho Ahn
Affiliation:
Department of Materials Science and Engineering, Hanyang University, Seoul 133-791, SouthKorea
In-Sung Park*
Affiliation:
Department of Materials Science and Engineering, Hanyang University, Seoul 133-791, SouthKorea
*
*Corresponding author. E-mail: yseo@sejong.ac.kr
**Corresponding author. E-mail: parkis77@hanyang.ac.kr
Get access

Abstract

Since it was discovered in 2004, graphene has attracted enormous attention as an emerging material for future devices, but it has been found that conventional lithographic processes based on polymer resist degrade its intrinsic performance. Recently, our group studied a resist-free scanning tunneling microscopy-based lithography in various atmospheres by injecting volatile liquids into a chamber. In this study, multilayer graphene was scanned and etched by controlling bias voltage under methanol pressure. We focused on improving patterning results in terms of depth and line width, while the previous study was performed to find an optimum gas environment for patterning on a graphite surface. Specifically, we report patterning outputs depending on conditions of voltage, current, and pressure. The optimum conditions for methanol environment etching were a gas pressure in the range of 41–50 torr, a −4 V tip bias, and a 2 nA tunneling current.

Type
Materials Applications
Copyright
Copyright © Microscopy Society of America 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Avouris, P., Chen, Z. & Perebeinos, V. (2007). Carbon-based electronics. Nat Nanotechnol 2(10), 605615.CrossRefGoogle ScholarPubMed
Biro, L.P., Nemes-Incze, P. & Lambin, P. (2012). Graphene: Nanoscale processing and recent applications. Nanoscale 4(6), 18241839.CrossRefGoogle ScholarPubMed
Bolotin, K.I., Sikes, K.J., Jiang, Z., Klima, M., Fudenberg, G., Hone, J., Kim, P. & Stormer, H.L. (2008). Ultrahigh electron mobility in suspended graphene. Solid State Commun 146(9-10), 351355.CrossRefGoogle Scholar
Byun, I.-S., Yoon, D., Choi, J.S., Hwang, I., Lee, D.H., Lee, M.J., Kawai, T., Son, Y.-W., Jia, Q., Cheong, H. & Park, B.H. (2011). Nanoscale lithography on monolayer graphene using hydrogenation and oxidation. ACS Nano 5(8), 64176424.CrossRefGoogle ScholarPubMed
Chen, Z., Lin, Y.-M., Rooks, M.J. & Avouris, P. (2007). Graphene nano-ribbon electronics. Phys E Low Dimens Syst Nanostruct 40(2), 228232.CrossRefGoogle Scholar
Dean, C.R., Young, A.F., Meric, I., Lee, C., Wang, L., Sorgenfrei, S., Watanabe, K., Taniguchi, T., Kim, P., Shepard, K.L. & Hone, J. (2010). Boron nitride substrates for high-quality graphene electronics. Nat Nanotechnol 5(10), 722726.CrossRefGoogle ScholarPubMed
Decker, R., Wang, Y., Brar, V.W., Regan, W., Tsai, H.Z., Wu, Q., Gannett, W., Zettl, A. & Crommie, M.F. (2011). Local electronic properties of graphene on a BN substrate via scanning tunneling microscopy. Nano Lett 11(6), 22912295.CrossRefGoogle ScholarPubMed
Dobrik, G., Tapasztó, L., Nemes-Incze, P., Lambin, P. & Biró, L.P. (2010). Crystallographically oriented high resolution lithography of graphene nanoribbons by STM lithography. Phys Status Solidi B 247(4), 896902.CrossRefGoogle Scholar
Geim, A.K. & Novoselov, K.S. (2007). The rise of graphene. Nat Mater 6(3), 183191.CrossRefGoogle ScholarPubMed
Goossens, A.M., Calado, V.E., Barreiro, A., Watanabe, K., Taniguchi, T. & Vandersypen, L.M.K. (2012). Mechanical cleaning of graphene. Appl Phys Lett 100(7), 073110-1–3.CrossRefGoogle Scholar
Han, M.Y., Özyilmaz, B., Zhang, Y. & Kim, P. (2007). Energy band-gap engineering of graphene nanoribbons. Phys Rev Lett 98(20), 206805. CrossRefGoogle ScholarPubMed
Hiura, H. (2004). Tailoring graphite layers by scanning tunneling microscopy. Appl Surf Sci 222(1-4), 374381.CrossRefGoogle Scholar
Kim, K., Hwang, D., Kim, J. & Seo, Y. (2008). Compact coarse approach mechanism for a scanning probe microscope. J Korean Phys Soc 52(2), 209211.CrossRefGoogle Scholar
Kim, K., Park, J., Kim, C., Choi, W., Seo, Y., Ahn, J. & Park, I.-S. (2012). Removing graphite flakes for preparing mechanically exfoliated graphene sample. Micro Nano Lett 7(11), 11331135.CrossRefGoogle Scholar
Kondo, S., Lutwyche, M. & Wada, Y. (1994). Nanofabrication of layered materials with the scanning tunneling microscope. Appl Surf Sci 75(1-4), 3944.CrossRefGoogle Scholar
Kurra, N., Prakash, G., Basavaraja, S., Fisher, T.S., Kulkarni, G.U. & Reifenberger, R.G. (2011). Charge storage in mesoscopic graphitic islands fabricated using AFM bias lithography. Nanotechnology 22(24), 245302-1–9.CrossRefGoogle ScholarPubMed
Liang, X., Jung, Y.-S., Wu, S., Ismach, A., Olynick, D.L., Cabrini, S. & Bokor, J. (2010). Formation of bandgap and subbands in graphene nanomeshes with sub-10 nm ribbon width fabricated via nanoimprint lithography. Nano Lett 10(7), 24542460.CrossRefGoogle ScholarPubMed
Lin, Y.C., Lu, C.C., Yeh, C.H., Jin, C.H., Suenaga, K. & Chiu, P.W. (2012). Graphene annealing: How clean can it be? Nano Lett 12(1), 414419.CrossRefGoogle Scholar
Liu, G.-Y., Xu, S. & Qian, Y. (2000). Nanofabrication of self-assembled monolayers using scanning probe lithography. Acc Chem Res 33(7), 457466.CrossRefGoogle ScholarPubMed
Masubuchi, S., Ono, M., Yoshida, K., Hirakawa, K. & Machida, T. (2009). Fabrication of graphene nanoribbon by local anodic oxidation lithography using atomic force microscope. Appl Phys Lett 94(8), 082107. CrossRefGoogle Scholar
Moser, J., Barreiro, A. & Bachtold, A. (2007). Current-induced cleaning of graphene. Appl Phys Lett 91(16), 163513. CrossRefGoogle Scholar
Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Katsnelson, M.I., Grigorieva, I.V., Dubonos, S.V. & Firsov, A.A. (2005). Two-dimensional gas of massless Dirac fermions in graphene. Nature 438(7065), 197200.CrossRefGoogle ScholarPubMed
Park, J., Kim, K.B., Park, J.Y., Choi, T. & Seo, Y. (2011). Graphite patterning in a controlled gas environment. Nanotechnology 22(33), 335304-1–7.CrossRefGoogle Scholar
Pumera, M. (2011). Graphene-based nanomaterials for energy storage. Energy Environ Sci 4(3), 668674.CrossRefGoogle Scholar
Ross, C.B., Sun, L. & Crooks, R.M. (1993). Scanning probe lithography. 1. Scanning tunneling microscope induced lithography of self-assembled n-alkanethiol monolayer resists. Langmuir 9(3), 632636.CrossRefGoogle Scholar
Schrader, M.E. (1980). Ultrahigh-vacuum techniques in the measurement of contact angles. 5. Leed study of the effect of structure on the wettability of graphite. J Phys Chem 84(21), 27742779.CrossRefGoogle Scholar
Seo, Y., Cadden-Zimansky, P. & Chandrasekhar, V. (2007). Low-temperature scanning force microscopy using a tuning fork transducer. J Korean Phys Soc 50(2), 378383.Google Scholar
Tapaszto, L., Dobrik, G., Lambin, P. & Biro, L.P. (2008). Tailoring the atomic structure of graphene nanoribbons by scanning tunnelling microscope lithography. Nat Nano 3(7), 397401.CrossRefGoogle ScholarPubMed
Wang, W.L., Bell, D.C. & Kaxiras, E. (2009). High resolution sculpting and imaging for graphene nano-structures. Microsc Microanal 15, 11661167.Google Scholar
Weng, L., Zhang, L., Chen, Y.P. & Rokhinson, L.P. (2008). Atomic force microscope local oxidation nanolithography of graphene. Appl Phys Lett 93(9), 093107. CrossRefGoogle Scholar
Yong, H., Kim, K., Choi, W., Park, J., Ahmad, M. & Seo, Y. (2012). The production of a cellular graphene array by scanning probe lithography and its ability to store electrical charge. Carbon 50(12), 46404647.CrossRefGoogle Scholar